Skip to main content
Log in

Theoretical studies on the reactivity of mono-substituted imidazole ligands

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The global and local quantum chemical reactivity descriptors of a series of imidazole derivatives substituted at 2, 4, and 5 positions with different groups including electron-donating and electron-withdrawing substituents have been calculated using the B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) methods. The substituents have been selected to cover a wide range of electronic effects. Considering the calculated Fukui functions, both imidazole derivatives and their anions are found to be suitable nucleophilic sites in the gas phase. For the most substituents it was observed that the calculated Fukui function \(f_{\text{k}}^{ - }\) values at the N-site are small in case of electron-releasing substituents indicating a preferred N-site for hard reaction. In contrast, large \(f_{\text{k}}^{ - }\) values in case of electron-attracting groups indicate a preferred N-site for soft reaction. These two local descriptors predicted the reactivity of the electron-rich imidazole sequence to be 2-substituted imidazoles > 5-substituted imidazoles > 4-substituted imidazole where reactivity toward electrophilic attack at a pyridine nitrogen atom is enhanced by electron donor substituents elsewhere in the molecule, due to resonance effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tadokoro M, Nakasuji K (2000) Coord Chem Rev 198:205–218

    Article  CAS  Google Scholar 

  2. Sunatsuki Y, Motoda Y, Matsumoto N (2002) Coord Chem Rev 226:205–209

    Article  Google Scholar 

  3. Rowan R, Tallon T, Sheahan AM, Curran R, McCann M, Kavanagh K, Devereux M, McKee V (2006) Polyhedron 25:1771–1778

    Article  CAS  Google Scholar 

  4. Fu YM, Zhao YH, Lan YQ, Wang Y, Qiu YQ, Shao KZ, Su ZM (2007) Inorg Chem Commun 10:720–723

    Article  CAS  Google Scholar 

  5. Higa T, Moriya M, Shimazaki Y, Yajima T, Tani F, Karasawa S, Nakano M, Naruta Y, Yamauchi O (2007) Inorg Chem Acta 360:3304–3313

    Article  CAS  Google Scholar 

  6. Deschamps P, Kulkarni PP, Gautam-Basak M, Sarkar B (2007) Coord Chem Rev 249:895–909

    Article  Google Scholar 

  7. Rabenstein DL, Daignault SA, Isab AA, Arnold AP, Shoukry MM (1985) J Am Chem Soc 107:6435–6439

    Article  CAS  Google Scholar 

  8. Varnagy K, Sovago I, Suli-Vargha H, Sanna D, Micera G (2000) J Inorg Biochem 81:35–41

    Article  CAS  Google Scholar 

  9. Pogni R, Lunga GD, Basosi R (1993) J Am Chem Soc 115:1546–1550

    Article  CAS  Google Scholar 

  10. Osz K, Varnagy K, Suli-Vargha H, Csampay A, Sanna D, Micera G, Sovago I (2004) J Inorg Biochem 98:24–32

    Article  CAS  Google Scholar 

  11. Mendez F, Gazquez JL (1994) J Am Chem Soc 116:9298–9301

    Article  CAS  Google Scholar 

  12. Li Y, Evans JNS (1995) J Am Chem Soc 117:7756–7759

    Article  CAS  Google Scholar 

  13. Nguyen LT, Le TN, De Proft F, Chandra AK, Langenaeker W, Nguyen MT, Geerlings P (1999) J Am Chem Soc 121:5992–6001

    Article  CAS  Google Scholar 

  14. Pal S, Chandrakumar KRS (2000) J Am Chem Soc 122:4145–4153

    Article  CAS  Google Scholar 

  15. Perez P, Simon-Manso Y, Aizman A, Fuentealba P, Contreras R (2000) J Am Chem Soc 122:4756–4762

    Article  CAS  Google Scholar 

  16. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873

    Article  CAS  Google Scholar 

  17. Chattaraj PK, Sarkar U, Roy DR (2006) Chem Rev 106:2065–2091

    Article  CAS  Google Scholar 

  18. Chattaraj PK, Maiti B, Sarkar U (2003) J Phys Chem A 107:4973–4975

    Article  CAS  Google Scholar 

  19. Roy DR, Parthasarathi R, Padmanabhan J, Sarkar U, Subramanium V, Chattaraj PK (2006) J Phys Chem A 110:1084–1093

    Article  CAS  Google Scholar 

  20. Padmanabhan J, Parthasarathi R, Elango M, Subramanian V, Krishnamoorthy BS, Gutierrez-Oliva S, Toro-Labbe A, Roy DR, Chattaraj PK (2007) J Phys Chem A 111:9130–9138

    Article  CAS  Google Scholar 

  21. Jaramillo P, Perez P, Contreras R, Tiznado W, Fuentealba P (2006) J Phys Chem A 110:8181–8187

    Article  CAS  Google Scholar 

  22. Jaramillo P, Domingo LR, Chamorro E, Perez P (2008) J Mol Struct (theochem) 865:68–72

    Article  CAS  Google Scholar 

  23. Perez P, Domingo LR, Doque-Norena M, Chamorro E (2009) J Mol Struct (theochem) 895:86–91

    Article  CAS  Google Scholar 

  24. Gazquez JL, Cedillo A, Vela A (2007) J Phys Chem A 111:1966–1970

    Article  CAS  Google Scholar 

  25. Pratihar S, Roy S (2010) J Org Chem 75:4957–4963

    Article  CAS  Google Scholar 

  26. Deuri S, Phukan P (2012) Comput Theor Chem 980:49–55

    Article  CAS  Google Scholar 

  27. Deuri S, Phukan P (2010) J Mol Struct (Theochem) 945:64–70

    Article  CAS  Google Scholar 

  28. Soleiman SM (2012) Comput Theor Chem 994:105–111

    Article  Google Scholar 

  29. Pilepic V, Urslic S (2001) J Mol Struct (Theochem) 538:41–49

    Article  CAS  Google Scholar 

  30. Richaud A, Mendeze F (2012) J Mex Chem Soc 56:351–354

    CAS  Google Scholar 

  31. Chermahini AN, Hosseinzadeh B, Beni AS, Teimouri A (2012) Comput Theor Chem (Theochem) 994:97–104

    Article  CAS  Google Scholar 

  32. Chermahini AN, Ghaedi A, Teimouri A, Momenbeik F, Dabbagh HA (2008) J Mol Struct (theochem) 867:78–84

    Article  CAS  Google Scholar 

  33. Chermahini AN, Teimouri A, Beni AS (2013) Comput Theor Chem (Theochem) 1008:67–73

    Article  CAS  Google Scholar 

  34. Chermahini AN, Beni AS, Sharghi H (2011) J Korean Chem Soc 55:392–399

    Article  Google Scholar 

  35. Dabbagh HA, Rasti E, Chermahini AN (2010) J Mol Struct (Theochem) 947:92–100

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega NA, Petersson G, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision B.01. Gaussian, Inc., Wallingford

  37. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801–3808

    Article  CAS  Google Scholar 

  38. Parr RG, Szentpaty LV, Liu S (1999) J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  39. Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708–5711

    Article  CAS  Google Scholar 

  40. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  41. Ozcan M, Dehri I, Erbil M (2004) Appl Surf Sci 236:155–164

    Article  CAS  Google Scholar 

  42. Pearson RG (1963) J Am Chem Soc 85:3533–3543

    Article  CAS  Google Scholar 

  43. Klopman G, Hudson RF (1967) Theor Chem Acta 8:165–174

    Article  CAS  Google Scholar 

  44. Klopman G (1968) J Am Chem Soc 90:223–234

    Article  CAS  Google Scholar 

  45. Chattaraj PK, Maiti B (2001) J Phys Chem A 105:169–183

    Article  CAS  Google Scholar 

  46. Chermette H (1999) J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  47. Roy RK, De Proft F, Geerlings P (1998) J Phys Chem A 102:7035–7040

    Article  CAS  Google Scholar 

  48. Langenaeker W, De Proft F, Geerlings P (1996) J Mol Struct (theochem) 362:175–179

    Article  CAS  Google Scholar 

  49. Arulmozhiraja S, Kolandaivel P (1997) Mol Phys 90:55–62

    Article  CAS  Google Scholar 

  50. Langenaeker W, De Decker M, Geerlings P (1990) J Mol Struct (theochem) 207:115–130

    Article  Google Scholar 

  51. Gazquez JL, Galvan M, Vela A (1990) J Mol Struct (theochem) 210:29–38

    Article  Google Scholar 

  52. Chandra AK, Michalak A, Nguyen MT, Nalewajski RF (1998) J Phys Chem 102:10182–10188

    Article  CAS  Google Scholar 

  53. GaAzquez JL, MeAndez F (1994) J Phys Chem 98:4591–4593

    Article  Google Scholar 

  54. Krishnamurti S, Roy RK, Vetrivel R, Iwata S, Pal S (1997) J Phys Chem A 101:7253–7257

    Article  Google Scholar 

  55. Lee C, Yang W, Parr RG (1988) J Mol Struct (theochem) 163:305–313

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alireza Najafi Chermahini or Alireza Salimi Beni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chermahini, A.N., Hosseinzadeh, B., Salimi Beni, A. et al. Theoretical studies on the reactivity of mono-substituted imidazole ligands. Struct Chem 25, 583–592 (2014). https://doi.org/10.1007/s11224-013-0322-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0322-1

Keywords

Navigation