Skip to main content
Log in

Energetic and electronic study of indole derivatives

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A detailed energetic and structural analysis of indole derivatives is performed by combining the results of B3LYP calculations with the data provided from the application of the natural bond orbital (NBO) theory. The following electron-donating and electron-accepting substituents have been considered: NO, NO2, CN, CH3, F, OCH3, OH and NH2. By using a homodesmic reaction, the substituent effect stabilization energies are evaluated. It is shown that the electron-donating and electron-accepting groups originate opposite effects when they interact with the indole ring. Attention is also given to the relative stabilization of the different substitution sites and of the different orientations of the substituents. In order to shed light into the origin of the global energetic effects of the indole substitution, the deletion and second-order perturbation methods implemented in the NBO analysis are applied. Special emphasis is paid to the effect of the endo- and exocyclic π-delocalizations. Connecting certain substituents to specific carbon centers leads to the formation of intramolecular H-bonds, which are here characterized by using geometrical and electronic descriptors. Their impact on the molecular stability and their interplay with the π-electron delocalization is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ramesh Dhani A, Avinash SK, Salenaagina MV, Saicharan Teja P, Masthanaiah Rathnam PR, Silpa VC (2011) J Chem Pharm Res 3(5):519–523

    Google Scholar 

  2. Sharma V, Kumar P, Pathak D (2010) J Heterocyclic Chem 47(3):491–502

    CAS  Google Scholar 

  3. Sunberg RJ (1996) Indoles. Academic Press, New York

    Google Scholar 

  4. Gribble GW (ed) (2010) Heterocyclic scaffolds II: reactions and applications of indoles, topics in heterocyclic chemistry, vol 2. Springer, London

    Google Scholar 

  5. Parry RJ (2008) Biosynthesis of compounds containing an indole nucleus. In: Chemistry of heterocyclic compounds. Wiley, pp 1–64

  6. Barden T (2010) Indoles: industrial, agricultural and over-the-counter uses. In: Gribble GW (ed) heterocyclic scaffolds II, vol 26., Topics in heterocyclic chemistrySpringer, Berlin, pp 31–46

    Chapter  Google Scholar 

  7. Kaushik N, Kaushik N, Attri P, Kumar N, Kim C, Verma A, Choi E (2013) Molecules 18(6):6620–6662

    Article  CAS  Google Scholar 

  8. Biswal S, Sahoo U, Sethy S, Kumar HKS, Banerjee M (2012) Asian J Pharm. Clin Res 5:1–6

    CAS  Google Scholar 

  9. Welsch ME, Snyder SA, Stockwell BR (2010) Curr Opin Chem Biol 14(3):347–361

    Article  CAS  Google Scholar 

  10. Johansson H, Jorgensen TB, Gloriam DE, Brauner-Osborne H, Pedersen DS (2013) RSC Adv 3(3):945–960

    Article  CAS  Google Scholar 

  11. Krygowski TM, Ejsmont K, Stepień BT, Cyrański MK, Poater J, Solà M (2004) J Org Chem 69(20):6634–6640

    Article  CAS  Google Scholar 

  12. Krygowski TM, Dobrowolski MA, Zborowski K, Cyrański MK (2006) J Phys Org Chem 19(12):889–895

    Article  CAS  Google Scholar 

  13. Krygowski TM, Stepień BT (2004) Pol J Chem 78:2213–2217

    CAS  Google Scholar 

  14. Cyrañski MK, Ksawery M (2005) Chem Rev 105(10):3773–3811

    Article  Google Scholar 

  15. Mohajeri A, Shahamirian M (2010) J Mol Struct (Theochem) 951(1–3):72–76

    Article  CAS  Google Scholar 

  16. Alagona G, Ghio C, Monti S (1998) J Mol Struct (Theochem) 433(1–3):203–216

    Article  CAS  Google Scholar 

  17. Kettle LJ, Bates SP, Mount AR (2000) PCCP 2(2):195–201

    Article  CAS  Google Scholar 

  18. Lopes Jesus AJ, Redinha JS (2014) Struct Chem. doi:10.1007/s11224-014-0520-5:1-12

  19. Perrin L, Andre F, Aninat C, Ricoux R, Mahy J-P, Shangguan N, Joullie MM, Delaforge M (2009) Metallomics 1(2):148–156

    Article  CAS  Google Scholar 

  20. Becke AD (1988) Phys Rev A 38(6):3098–3100

    Article  CAS  Google Scholar 

  21. Becke AD (1993) J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  22. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72(1):650–654

    Article  CAS  Google Scholar 

  23. Krygowski TM, Szatylowicz H, Stasyuk OA, Dominikowska J, Palusiak M (2014) Chem Rev 114(12):6383–6422

    Article  CAS  Google Scholar 

  24. Siodła T, Ozimiński WP, Hoffmann M, Koroniak H, Krygowski TM (2014) J Org Chem 79(16):7321–7331

    Article  Google Scholar 

  25. Palusiak M, Domagala M, Dominikowska J, Bickelhaupt FM (2014) PCCP 16(10):4752–4763

    Article  CAS  Google Scholar 

  26. Mohajeri A, Shahamirian M (2010) J Phys Org Chem 23(5):440–450

    CAS  Google Scholar 

  27. Singla N, Bhadram VS, Narayana C, Chowdhury P (2013) J Phys Chem A 117(13):2738–2752

    Article  CAS  Google Scholar 

  28. Krygowski TM, Palusiak M, Płonka A, Zachara-Horeglad JE (2007) J Phys Org Chem 20(5):297–306

    Article  CAS  Google Scholar 

  29. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166(3):281–289

    Article  CAS  Google Scholar 

  30. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166(3):275–280

    Article  CAS  Google Scholar 

  31. Head-Gordon M, Head-Gordon T (1994) Chem Phys Lett 220(1–2):122–128

    Article  CAS  Google Scholar 

  32. M. J. Frisch GWT, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox (2009) GAUSSIAN 09. A.02 edn. Gaussian, Inc., Wallingford CT

  33. Weinhold F, Landis CR (2005) Valency and bonding: A Natural Bond Orbital Donor-Acceptor Perspective. Cambridge University Press, New York

    Book  Google Scholar 

  34. Weinhold F, Landis CR (2012) Discovering chemistry with natural bond orbitals. Wiley, New Jersey

    Book  Google Scholar 

  35. Glendening ED, Landis CR, Weinhold F (2012) WIREs Comput Mol Sci 2(1):1–42

    Article  CAS  Google Scholar 

  36. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0 Theoretical Chemistry Institute, University of Wisconsin, Madison

  37. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  38. Bader RFW (1990) Atoms in molecules: a quantum theory. University Press, Oxford

    Google Scholar 

  39. Bader RFW (1991) Chem Rev 91(5):893–928

    Article  CAS  Google Scholar 

  40. Biegler-König F, Schönbohm J, Bayles D (2001) J Comput Chem 22(5):545–559

    Article  Google Scholar 

  41. Exner O, Bohm S (2000) J Chem Soc Perkin Trans 2(9):1994–2000

    Article  Google Scholar 

  42. Krygowski TM, Stepień BT (2005) Chem Rev 105(10):3482–3512

    Article  CAS  Google Scholar 

  43. Charton M (2007) Electrical effect substituent constants for correlation analysis. In: Progress in physical organic chemistry. Wiley, pp 119–251

  44. Pross A, Radom L, Taft RW (1980) J Org Chem 45(5):818–826

    Article  CAS  Google Scholar 

  45. Hammett LP (1937) J Am Chem Soc 59(1):96–103

    Article  CAS  Google Scholar 

  46. Hansch C, Leo A, Taft RW (1991) Chem Rev 91(2):165–195

    Article  CAS  Google Scholar 

  47. Domingo LR, Pérez P, Contreras R (2003) J Org Chem 68(15):6060–6062

    Article  CAS  Google Scholar 

  48. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Pure Appl Chem 83:1637–1641

    CAS  Google Scholar 

  49. Grabowski SJ (ed) (2006) Hydrogen bonding—new insights (Challenges and advances in computational chemistry and physics). Springer, Dordrecht

    Google Scholar 

  50. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, Oxford

    Google Scholar 

  51. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, New York

    Book  Google Scholar 

  52. Steiner T (2002) Angew Chem Int Edit 41(1):48–76

    Article  CAS  Google Scholar 

  53. Koch U, Popelier PLA (1995) J Phys Chem 99(24):9747–9754

    Article  CAS  Google Scholar 

  54. Desiraju GR, Steiner T (1999) The weak hydrogen bondin structural chemistry and biology. Oxford University Press, New York

    Google Scholar 

  55. Pacios LF, Gómez PC (2001) J Comput Chem 22(7):702–716

    Article  CAS  Google Scholar 

  56. Espinosa E, Molins E, Lecomte C (1998) Chem Phys Lett 285(3–4):170–173

    Article  CAS  Google Scholar 

  57. Gilli G, Gilli P (2009) The nature of the hydrogen bond: outline of a comprehensive hydrogen bond theory. Oxford University Press, New York

    Book  Google Scholar 

  58. Gilli P, Bertolasi V, Ferretti V, Gilli G (1994) J Am Chem Soc 116(3):909–915

    Article  CAS  Google Scholar 

  59. Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) J Am Chem Soc 111(3):1023–1028

    Article  CAS  Google Scholar 

  60. Sobczyk L, Grabowski SJ, Krygowski TM (2005) Chem Rev 105(10):3513–3560

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Lopes Jesus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes Jesus, A.J., Redinha, J.S. Energetic and electronic study of indole derivatives. Struct Chem 27, 809–820 (2016). https://doi.org/10.1007/s11224-015-0635-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0635-3

Keywords

Navigation