Skip to main content
Log in

Activation of propane C–H and C–C bonds by a diplatinum cluster: potential energy surfaces and reaction mechanisms

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The activation mechanism of C3H8 catalyzed by the homonuclear bimetallic Pt2 cluster has been detailedly explored on the singlet and triplet potential energy surfaces at BPW91/aug-cc-pvtz, Lanl2tz level. The C–H bond cleavage channel (dehydrogenation and the release of propylene) is kinetically predominant, whereas the C–C bond cleavage channel (demethanation and the release of ethane) should be ruled out. Furthermore, the release of propylene channel is kinetically favorable, while the dehydrogenation channel is thermodynamically preferable. Besides, both the C–H cleavage intermediate (Pt2H2C3H6b) and the C–C cleavage intermediates (CH3HPt2CHCH3 and CH3PtPtHC2H4) are thermodynamically preferred. The C–H cleavage intermediate (Pt2H2C3H6b) is kinetically favored, while the C–C cleavage intermediates (CH3HPt2CHCH3 and CH3PtPtHC2H4) are kinetically hindered. The homonuclear bimetallic Pt2 cluster toward propane exhibits higher reactivity than the Pt atom, which is in good agreement with the experimental observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Kwapien K, Sierka M, Döbler J, Sauer J (2010) ChemCatChem 2:819–826

    Article  CAS  Google Scholar 

  2. Anstey MR, Yung CM, Du J, Bergman RG (2007) J Am Chem Soc 192:776–777

    Article  Google Scholar 

  3. Labinger JA, Bercaw JE (2002) Nature 417:507–514

    Article  CAS  Google Scholar 

  4. Kumar V, Kawazoe Y (2008) Phys Rev B 77:205418–205427

    Article  Google Scholar 

  5. Vajda S, Pellin MJ, Greeley JP, Marshall CL, Curtiss LA, Ballentine GA, Elam JW, Catillon-Mucherie S, Redfern PC, Mehmood F, Zapol P (2009) Nat Mater 8:213–216

    Article  CAS  Google Scholar 

  6. Zhang DJ, Liu CB, Bi SW, Yuan SL (2003) Chem Eur J 9:484–501

    Article  Google Scholar 

  7. Moc J, Gordon MS (2008) Theor Chem Account 120:243–261

    Article  CAS  Google Scholar 

  8. Sanders L, Hanton SD, Weisshaar JC (1990) J Chem Phys 92:3498–3518

    Article  CAS  Google Scholar 

  9. Yi SS, Reichert EL, Holthausen MC, Koch W, Weisshaar JC (2000) Chem Eur J 6:2232–2245

    Article  CAS  Google Scholar 

  10. Fedorov DG, Gordon MS (2000) J Phys Chem A 104:2253–2260

    Article  CAS  Google Scholar 

  11. Yi SS, Blomberg MRA, Siegbahn PEM, Weisshaar JC (1998) J Phys Chem A 102:395–411

    Article  CAS  Google Scholar 

  12. Schilling JB, Beauchamp JL (1988) Organometallics 7:194–199

    Article  CAS  Google Scholar 

  13. Sievers MR, Armentrout PB (2003) Organometallics 22:2599–2611

    Article  CAS  Google Scholar 

  14. Sievers MR, Chen YM, Haynes CL (2000) Int J Mass Spectrom 195:149–170

    Article  Google Scholar 

  15. Armentrout PB (2007) Organometallics 26:5473–5485

    Article  CAS  Google Scholar 

  16. Armentrout PB (2007) Organometallics 26:5486–5500

    Article  CAS  Google Scholar 

  17. Chen YM, Armentrout PB (1995) J Am Chem Soc 117:9291–9304

    Article  CAS  Google Scholar 

  18. Armentrout PB, Chen YM (1999) J Am Soc Mass Spectrom 10:821–839

    Article  CAS  Google Scholar 

  19. Carroll JJ, Haug KL, Weisshaar JC (1995) J Phys Chem 99:13955–13969

    Article  CAS  Google Scholar 

  20. Chen YM, Sievers MR, Armentrout PB (1997) Int J Mass Spectrom Ion Process 167168:195–212

    Google Scholar 

  21. Chen YM, Armentrout PB (1995) J Phys Chem 99:11424–11431

    Article  CAS  Google Scholar 

  22. Gibson JK, Haire RG, Marcüalo J, Santos M, de Matos AP, Mrozik MK, Pitzer RM, Bursten BE (2007) J Organomet 26:3947–3956

    Article  CAS  Google Scholar 

  23. Santo ED, Santos M, Michelini MC, Marc-alo J, Russo N, Gibson JK (2011) J Am Chem Soc 133:1955–1970

    Article  Google Scholar 

  24. Schröder D, Roithová J, Alikhani E, Kwapien K, Sauer J (2010) Chem Eur J 16:4110–4119

    Article  Google Scholar 

  25. Jackson GS, White FM, Hammill CL, Clark RJ, Marshall AG (1997) J Am Chem Soc 119:7567–7572

    Article  CAS  Google Scholar 

  26. Hanmura T, Ichihashi M, Kondow T (2002) J Phys Chem A 106:11465–11469

    Article  CAS  Google Scholar 

  27. Adlhart C, Uggerud E (2007) Chem Eur J 13:6883–6890

    Article  CAS  Google Scholar 

  28. Ye P, Ye Q, Zhang GB, Cao ZX (2011) Chem Phys Lett 501:554–561

    Article  CAS  Google Scholar 

  29. Trevor DJ, Cox DM, Kaldor A (1990) J Am Chem Soc 112:3742–3749

    Article  CAS  Google Scholar 

  30. Xiao L, Wang LC (2007) J Phys Chem B 111:1657–1663

    Article  CAS  Google Scholar 

  31. Cho HG, Andrews L (2009) Organometallics 28:1358–1368

    Article  CAS  Google Scholar 

  32. Li FM, Yang HQ, Ju TY, Li XY, Hu CW (2012) Comput Theor Chem 994:112–120

    Article  CAS  Google Scholar 

  33. Li FM, Yang HQ, Ju TY, Li XY, Hu CW (2012) Int J Mol Sci 13:9278–9297

    Article  CAS  Google Scholar 

  34. Cui Q, Musaev DG (1998) J Phys Chem A 102:6373–6384

    Article  CAS  Google Scholar 

  35. Cui Q, Musaev DG, Morokuma KJ (1998) Chem Phys 108:8418–8428

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski, J, Fox, DJ (2010) Gaussian 09, Revision C.01. Gaussian, Inc., Wallingford

  37. Becke AD (1938) Phys Rev A 38:3098–3100

    Article  Google Scholar 

  38. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  39. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  40. McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  41. Roy LE, Hay PJ, Martin RL (2008) J Chem Theory Comput 4:1029–1031

    Article  CAS  Google Scholar 

  42. Seeger R, Pople JA (1977) J Chem Phys 66:3045–3050

    Article  CAS  Google Scholar 

  43. Bauernschmitt R, Ahlrichs R (1996) J Chem Phys 104:9047–9052

    Article  CAS  Google Scholar 

  44. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  45. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  46. Kendall RA, Dunning TH Jr (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  47. Ho J, Polak ML, Ervin KM, Lineberger WC (1993) J Chem Phys 99:8542–8551

    Article  CAS  Google Scholar 

  48. Taylor S, Lemire GW, Hamrick YM, Fu ZW, Morse MD (1988) J Chem Phys 89:5517–5523

    Article  CAS  Google Scholar 

  49. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  50. Chalasinski G, Kendall RA, Simons J (1987) J Chem Phys 87:2965–2975

    Article  CAS  Google Scholar 

  51. Eyring H (1935) J Chem Phys 3:107–115

    Article  CAS  Google Scholar 

  52. Wigner E (1937) J Chem Phys 5:720–725

    Article  CAS  Google Scholar 

  53. Kaldor A, Cox DM (1990) Pure Appl Chem 62:79–88

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support by the National Natural Science Foundation of China (Nos. 21343001, 20976109, and 91016002), the Special Research Foundation of Doctoral Education of China (No. 20090181110046), and the Applied Foundation Research of Sichuan Province (No. 2011JY0024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Qing Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2150 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ju, TY., Yang, HQ., Li, FM. et al. Activation of propane C–H and C–C bonds by a diplatinum cluster: potential energy surfaces and reaction mechanisms. Struct Chem 25, 471–481 (2014). https://doi.org/10.1007/s11224-013-0311-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0311-4

Keywords

Navigation