Skip to main content
Log in

A theoretical study of the reaction of Ti+ with propane

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Detailed quartet and doublet potential energy surfaces for the Ti+ + C3H8 → TiC3H +6 + H2 and Ti+ + C3H8 → TiC2H +4 +  CH4 elimination reactions have been studied using density functional theory with B3LYP functional and ab initio coupled cluster CCSD(T) methods. Several H2 elimination and CH4 elimination reaction paths have been examined including the IRC following. In particular, the mechanisms involving, respectively, the H2TiC3H +6 and CH3TiHC2H +4 intermediates have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eller K and Schwarz H (1991). Chem Rev 91: 1121

    Article  CAS  Google Scholar 

  2. Schröder D and Schwarz H (1995). Angew Chem Int Ed Engl 34: 1973

    Article  Google Scholar 

  3. Böhme DK and Schwarz H (2005). Angew Chem Int Ed Engl 44: 2336

    Article  CAS  Google Scholar 

  4. van Koppen PAM, Kemper PR, Bowers MT (1996) In organometallic ion chemistry. In: Freiser BS (ed) Kluwer, Dordrecht, p 157

  5. Armentrout PB (1989) In gas-phase inorganic chemistry. In: Russell DH (ed) Plenum Press, New York, p 1

  6. Armentrout PB (1990) In selective hydrocarbon activation: principles and progress. In: Davies JA, Watson PL, Liebman J, Greenberg A (eds) VCH, New York, p 467

  7. Weisshaar JC (1992) In advances in chemical physics. In: Ng C (ed) Wiley Interscience, New York, vol 82, pp 213–261

  8. Van Koppen PAM, Bowers MT, Fisher ER, Armentrout PB (1994) J Am Chem Soc 116:3780 and papers cited therein

    Google Scholar 

  9. Siegbahn PEM (1996) In advances in chemical physics. In: Prigogine I, Rice SA (eds) Wiley, New York, vol XCIII, pp 333–386

  10. Moc J, Fedorov DG and Gordon MS (2000). J Chem Phys 112: 10247

    Article  CAS  Google Scholar 

  11. Tonkyn R, Ronan M and Weisshaar JC (1988). J Phys Chem 92: 92

    Article  CAS  Google Scholar 

  12. MacTaylor RS, Vann WD and Castleman AW (1996). J Phys Chem 100: 5329

    Article  CAS  Google Scholar 

  13. Sunderlin LS and Armentrout PB (1989). Int J Mass Spect Ion Process 94: 149

    Article  CAS  Google Scholar 

  14. Bowers MT, Haynes CL, Armentrout PB and Koppen PAM (1998). J Am Chem Soc 120: 5704

    Article  Google Scholar 

  15. Sievers MR, Jarvis LM and Armentrout PB (1998). J Am Chem Soc 120: 1891

    Article  CAS  Google Scholar 

  16. Gordon MS, Bode BM, Webb SP, Kudo T, Moc J, Fedorov DG, Chung G (2001) Titanium chemistry in computational organometallic chemistry. In: Cundari TR (ed) Marcel Dekker Inc, New York, pp 275–290

  17. Holthausen MC and Koch W (1996). Helv Chimica Acta 79: 1939

    Article  CAS  Google Scholar 

  18. Yi SS, Blomberg MRA, Siegbahn PEM and Weisshaar JC (1998). J Phys Chem A 102: 395

    Article  CAS  Google Scholar 

  19. Yi SS, Reichert EL, Holthausen MC, Koch W and Weisshaar JC (2000). Chem Eur J 6: 2232

    Article  CAS  Google Scholar 

  20. Fedorov DG and Gordon MS (2000). J Phys Chem A 104: 2253

    Article  CAS  Google Scholar 

  21. Becke AD (1988). Phys Rev A 38: 3098

    Article  CAS  Google Scholar 

  22. Becke AD (1993). J Chem Phys 98: 1372

    Article  CAS  Google Scholar 

  23. Becke AD (1993). J Chem Phys 98: 5648

    Article  CAS  Google Scholar 

  24. Lee C, Yang W and Parr RG (1988). Phys Rev B 37: 785

    Article  CAS  Google Scholar 

  25. Vosko SH, Wilk L and Nusair M (1980). Can J Phys 58: 1200

    Article  CAS  Google Scholar 

  26. Fukui K (1981). Acc Chem Res 14: 363

    Article  CAS  Google Scholar 

  27. Ishida K, Morokuma K and Komornicki A (1977). J Chem Phys 66: 2153

    Article  CAS  Google Scholar 

  28. Schmidt MW, Gordon MS and Dupuis M (1985). J Am Chem Soc 107: 2585

    Article  CAS  Google Scholar 

  29. Garrett BC, Redmon MJ, Steckler R, Truhlar DG, Baldridge KK, Bartol D, Schmidt MW and Gordon MS (1988). J Chem Phys 92: 1476

    Article  CAS  Google Scholar 

  30. Baldridge KK, Gordon MS, Steckler R and Truhlar DG (1989). J Chem Phys 93: 5107

    Article  CAS  Google Scholar 

  31. Gonzalez C and Schlegel HB (1989). J Chem Phys 90: 2154

    Article  CAS  Google Scholar 

  32. Gonzalez C and Schlegel HB (1990). J Phys Chem 94: 5523

    Article  CAS  Google Scholar 

  33. GAMESS (General Atomic and Molecular Electronic Structure System): Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) J Comput Chem 14:1347

    Google Scholar 

  34. Wachters AJH (1970). J Chem Phys 52: 1033

    Article  CAS  Google Scholar 

  35. Frisch MJ, Pople JA and Binkley JS (1984). J Chem Phys 80: 3265

    Article  CAS  Google Scholar 

  36. Cizek J (1969). Adv Chem Phys 14: 35

    Article  CAS  Google Scholar 

  37. Purvis GD and Bartlett RJ (1982). J Chem Phys 76: 1910

    Article  CAS  Google Scholar 

  38. Scuseria GE, Janssen CL and Schaefer HF (1988). J Chem Phys 89: 7382

    Article  CAS  Google Scholar 

  39. Raghavachari K, Trucks GW, Pople JA and Head-Gordon M (1989). Chem Phys Lett 157: 479

    Article  CAS  Google Scholar 

  40. Scuseria GE and Schaefer HF (1989). J Chem Phys 90: 3700

    Article  CAS  Google Scholar 

  41. Watts JD, Gauss J and Bartlett RJ (1993). J Chem Phys 98: 8718

    Article  CAS  Google Scholar 

  42. Sugar J, Corioliss, C (1985) J Phys Chem Ref Data 14 (Suppl. No. 2)

  43. Hay PJ (1977). J Chem Phys 66: 4377

    Article  CAS  Google Scholar 

  44. Lide DR (1960). J Chem Phys 33: 1514

    Article  CAS  Google Scholar 

  45. Hehre WJ, Radom L, Schleyer PvR and Pople JA (1986). Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  46. Holthausen MC, Fiedler A, Schwarz H and Koch W (1996). J Phys Chem 100: 6236

    Article  CAS  Google Scholar 

  47. Holthausen MC and Koch W (1996). J Am Chem Soc 118: 9932

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Moc.

Additional information

Contribution to the Mark S. Gordon 65th Birthday Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moc, J., Gordon, M.S. A theoretical study of the reaction of Ti+ with propane. Theor Chem Account 120, 243–261 (2008). https://doi.org/10.1007/s00214-007-0315-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0315-5

Keywords

Navigation