Skip to main content

Advertisement

Log in

Periodic DFT study of structural, electronic, absorption, and thermodynamic properties of crystalline α-RDX under hydrostatic compression

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Periodic density functional theory calculations have been performed to study the structural, electronic, absorption, and thermodynamic properties of crystalline α-RDX under hydrostatic compression of 0–50 GPa. As the pressure increases, its lattice parameters, bond lengths, bonds angels, torsion angles, cell volumes, and band structure crystal change regularly except at the pressure of 13 GPa, where a structural transformation occurs. The remarkable changes in the bond lengths and bond angles indicate that there are several possible initiation decomposition mechanisms of RDX under compression. An analysis of density of states shows that the interactions between electrons, especially for the valence electrons, are strengthened under the influence of pressure. The absorption spectra show that the structural transformation makes the absorption coefficient of C–H stretching increase significantly. An analysis of thermodynamic properties indicates that the structural transformation is endothermic and not spontaneous at room temperature. The increasing temperature is not favorable for the structural transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Copper PW, Kurowski SR (1996) Introduction to the technology of explosives. Wiley, New York

    Google Scholar 

  2. Akhaven J (1998) The chemsitry of explosives. Royal Society of Chemistry, Cambridge

    Google Scholar 

  3. Dreger ZA, Gupta YM (2010) J Phys Chem A 114:8099–8105

    Article  CAS  Google Scholar 

  4. Dreger ZA, Gupta YM (2007) J Phys Chem B 111:3893–3903

    Article  CAS  Google Scholar 

  5. Miao MS, Dreger ZA, Winey JM, Gupta YM (2008) J Phys Chem A 112:12228–12234

    Article  CAS  Google Scholar 

  6. Munday LB, Chung PW, Rice BM, Solares SD (2011) J Phys Chem B 115:4378–4386

    Article  CAS  Google Scholar 

  7. Ciezak JF, Jenkins TA, Liu ZX, Hemley RJ (2007) J Phys Chem A 111:59–63

    Article  CAS  Google Scholar 

  8. Swadley MJ, Li TL (2007) J Chem Theory Comput 3:505–513

    Article  CAS  Google Scholar 

  9. Kuklja MM, Kunz AB (1999) J Phys Chem B 103:8427–8431

    Article  CAS  Google Scholar 

  10. Chakraborty D, Muller RP, Dasgupta S, Goddard WA (2000) J Phys Chem A 104:2261–2272

    Article  CAS  Google Scholar 

  11. Rice BM, Chabalowski CF (1997) J Phys Chem A 101:8720–8726

    Article  CAS  Google Scholar 

  12. Harris NJ, Lammertsma K (1997) J Am Chem Soc 119:6583–6586

    Article  CAS  Google Scholar 

  13. Wu CJ, Fried LE (1997) J Phys Chem A 101:8675–8679

    Article  CAS  Google Scholar 

  14. Dreger ZA, Gupta YM (2012) J Phys Chem A 116:8713–8717

    Article  CAS  Google Scholar 

  15. Ciezak JA, Trevino SF (2006) J Phys Chem A 110:5149–5155

    Article  CAS  Google Scholar 

  16. Sorescu DC, Rice BM, Thompson DL (1999) J Phys Chem B 103:6783–6790

    Article  CAS  Google Scholar 

  17. Patterson JE, Dreger ZA, Gupta YM (2007) J Phys Chem B 111:10897–10904

    Article  CAS  Google Scholar 

  18. Baer BJ, Oxley J, Nicol M (1990) High Press Res 2:99–108

    Article  Google Scholar 

  19. Byrd EFC, Rice BM (2007) J Phys Chem C 111:2787–2796

    Article  CAS  Google Scholar 

  20. Zhu WH, Zhang XW, Wei T, Xiao HM (2009) Theor Chem Acc 124:179–186

    Article  CAS  Google Scholar 

  21. Zhu WH, Zhang XW, Zhu W, Xiao HM (2008) Phys Chem Chem Phys 10:7318–7323

    Article  CAS  Google Scholar 

  22. Zhu WH, Xiao JJ, Xiao HM (2006) Chem Phys Lett 422:117–121

    Article  CAS  Google Scholar 

  23. Zhu WH, Xiao HM (2006) J Phys Chem B 110:18196–18203

    Article  CAS  Google Scholar 

  24. Zhu WH, Xiao HM (2008) J Comput Chem 29:176–184

    Article  CAS  Google Scholar 

  25. Zhu WH, Xiao HM (2010) Struct Chem 21:657–665

    Article  CAS  Google Scholar 

  26. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) J Phys Condens Matter 14:2717–2744

    Article  CAS  Google Scholar 

  27. Vanderbilt D (1990) Phys Rev B 41:7892–7895

    Article  Google Scholar 

  28. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  29. Fletcher R (1980) Practical methods of optimization vol 1. Wiley, New York

    Google Scholar 

  30. Ceperley DM, Alder BJ (1980) Phys Rev Lett 45:566–569

    Article  CAS  Google Scholar 

  31. Perdew JP, Zunger A (1981) Phys Rev B 23:5048–5079

    Article  CAS  Google Scholar 

  32. Choi CS (1972) Acta Cryst Sect B 28:2857–2862

    Article  CAS  Google Scholar 

  33. Zhu WH, Xiao HM (2009) J Phys Chem B 113:10315–10321

    Article  CAS  Google Scholar 

  34. Zhu WH, Wei T, Zhu W, Xiao HM (2008) J Phys Chem A 112:4688–4693

    Article  CAS  Google Scholar 

  35. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–6868

    Article  CAS  Google Scholar 

  36. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  37. Davidson AJ, Oswald IDH, Francis DH, Lennie AR, Marshall WG, Millar DIA, Pulham CR, Warren JE, Cumming AS (2008) Cryst Eng Commun 10:162–165

    Article  CAS  Google Scholar 

  38. Zhao XS, Hintsa EJ, Lee YT (1988) J Chem Phys 88:801–810

    Article  CAS  Google Scholar 

  39. Isayev O, Gorb L, Qasim M, Leszczynski J (2008) J Phys Chem B 112:10005–11013

    Article  Google Scholar 

  40. Behrens R, Bulusu S (1992) J Chem Phys 96:8877–8891

    Article  CAS  Google Scholar 

  41. Behrens R, Bulusu S (1992) J Chem Phys 96:8891–8897

    Article  CAS  Google Scholar 

  42. Botcher TR, Wight CA (1994) J Chem Phys 98:5441–5444

    Article  CAS  Google Scholar 

  43. Goto N, Fujihisa H, Yamawaki H, Eakabayashi K, Nakayama Y, Yoshida M, Koshi M (2006) J Phys Chem B 110:23655–23659

    Article  CAS  Google Scholar 

  44. Liu H, Zhao J, Wei D, Gong Z (2006) J Chem Phys 124:124501–124510

    Article  Google Scholar 

  45. Zhu WH, Xiao JJ, Ji GF, Zhang F, Xiao HM (2007) J Phys Chem B 111:12715–12722

    Article  CAS  Google Scholar 

  46. Meyer R, Köhler J, Homburg A (2002) Explosive. Wiley-VCH, GmbH, Weiheim

    Book  Google Scholar 

  47. Xu XJ, Zhu WH, Xiao HM (2007) J Phys Chem B 111:2090–2097

    Article  CAS  Google Scholar 

  48. Kuklja MM, Stefanovich EV, Kunz AB (2000) J Chem Phys 112:3417–3423

    Article  CAS  Google Scholar 

  49. Luty T, Ordon P, Eckhardt CJ (2000) J Chem Phys 117:1775–1784

    Article  Google Scholar 

  50. Saha S, Sinha TP, Mookerjee A (2000) Phys Rev B 62:8828–8834

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21273115 and U1230120) and the Grant from the National Key Laboratory of Shock Wave and Detonation Physics, the Institute of Fluid Physics, China Academy of Engineering Physics (Grant No. 076100-1197F).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q., Zhu, W. & Xiao, H. Periodic DFT study of structural, electronic, absorption, and thermodynamic properties of crystalline α-RDX under hydrostatic compression. Struct Chem 25, 451–461 (2014). https://doi.org/10.1007/s11224-013-0306-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0306-1

Keywords

Navigation