Skip to main content
Log in

Thermogravimetric method for a rapid estimation of vapor pressure and vaporization enthalpies of disubstituted benzoic acids: an attempt to correlate vapor pressures and vaporization enthalpies with structure

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A rapid estimation of vapor pressure and vaporization enthalpies of some disubstituted benzoic acids (2,4-dihydroxybenzoic acid (2,4-DHBA), 2,6-dihydroxybenzoic acid (2,6-DHBA), 3,4-dihydroxybenzoic acid (3,4-DHBA), 2,4-dinitrobenzoic acid (2,4-DNBA), 3,4-dinitrobenzoic acid (3,4-DNBA), 2,5-dibromobenzoic acid (2,5-DBBA), and 3,5-dibromobenzoic acid (3,5-DBBA)) was made using a simultaneous TG/DSC apparatus operating with aluminum open crucibles under inert atmosphere in both isothermal and non-isothermal mode. No evidence of thermal decomposition (in the form of endo or exothermic effect) was found during each experiment. Vapor pressure was obtained in the range from some tenth to some hundreds of Pa after calibration with benzoic acid. All operative conditions (sample mass, temperature rage, and purge gas flow) were carefully checked in order to obtain reliable results. Internal consistency of the results obtained was checked by comparing the sublimation enthalpy obtained by the sum of the vaporization enthalpies derived by the global NITG and ITG data, the melting enthalpies from DSC adjusted at 298.15 using the molar isobaric heat capacities of both solid and liquid estimated according to a group additivity approach and that obtained from the sublimation enthalpies determined by torsion effusion corrected at 298.15 K using the same approach. Finally, some comments concerning the relationship between energetics and structure (substituent effect) are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Price DM, Hawkins M (1998) Thermochim Acta 315(1998):19–24

    Article  CAS  Google Scholar 

  2. Price DM (2001) Thermochim Acta 367–368:253–262

    Article  Google Scholar 

  3. Price DM (2001) J Therm Anal Calorim 64:315–322

    Article  CAS  Google Scholar 

  4. Price DM, Hawkins M (1999) Thermochim Acta 329:73–76

    Article  CAS  Google Scholar 

  5. Price DM, Bashir S, Derrick PR (1999) Thermochim Acta 327:167–171

    Article  CAS  Google Scholar 

  6. Luo H, Baker GA, Dai S (2008) J Phys Chem B 112:10077–10081

    Article  CAS  Google Scholar 

  7. Verevkin SP, Ralys R, Zaitsau DH, Emel’yanenko VN (2012) Thermochim Acta 538:55–62

    Article  CAS  Google Scholar 

  8. Dollimore D (1999) Thermochim Acta 340:19–29

    Article  Google Scholar 

  9. Elder JP (1997) J Therm Anal 49:897–905

    Article  CAS  Google Scholar 

  10. Chatterjee K, Dollimore D, Alexander KS (2001) Int J Pharm 213:31–44

    Article  CAS  Google Scholar 

  11. Chatterjee K, Dollimore D, Alexander KS (2001) J Therm Anal 63:629–639

    Article  CAS  Google Scholar 

  12. Phang P, Dollimore D (1999) Proc NATAS Ann Conf Therm Anal Appl 27:598–601

    Google Scholar 

  13. Phang P, Dollimore D, Evans S (2000) Proc NATAS Ann Conf Therm Anal Appl 28:54–59

    Google Scholar 

  14. Burnham L, Dollimore D, Alexander KS (1999) Proc NATAS Ann Conf Therm Anal Appl 27:602–606

    Google Scholar 

  15. Wright SF, Alexander KS, Dollimore D (2001) Thermochim Acta 367:29–35

    Article  Google Scholar 

  16. Chatterjee K, Dollimore D, Alexander KS (2001) Instrum Sci Technol 29:133–144

    Article  CAS  Google Scholar 

  17. Gueckel W, Rittig FR, Synnatschke G (1974) Pestic Sci 5:393–400

    Article  CAS  Google Scholar 

  18. Moelwyn-Hughes EA (1957) Physical chemistry. Pergamon Press, London

    Google Scholar 

  19. Mortensen EA, Eyring H (1960) J Phys Chem 64:846–849

    Article  CAS  Google Scholar 

  20. Pieterse N, Focke WW (2003) Thermochim Acta 406:191–198

    Article  CAS  Google Scholar 

  21. Chatterjee K, Dollimore D, Alexander KS (2002) Thermochim Acta 392–393:107–117

    Article  Google Scholar 

  22. Månsson M, Sellers P, Stridh G, Sunner S (1977) J Chem Thermodyn 9:91–97

    Article  Google Scholar 

  23. Lerdkanchanaporn S, Dollimore D (1998) Thermochim Acta 324:15–23

    Article  CAS  Google Scholar 

  24. Barontini F, Cozzani V (2007) Thermochim Acta 460:15–21

    Article  CAS  Google Scholar 

  25. Vecchio S (2006) J Therm Anal Calorim 84:271–278

    Article  CAS  Google Scholar 

  26. Vecchio S (2007) J Therm Anal Calorim 87:79–83

    Article  CAS  Google Scholar 

  27. Vecchio S (2010) Thermochim Acta 499:27–33

    Article  CAS  Google Scholar 

  28. Vecchio S, Brunetti B (2011) Thermochim Acta 515:84–90

    Article  CAS  Google Scholar 

  29. Vecchio S, Brunetti B (2009) J Chem Thermodyn 41:880–887

    Article  CAS  Google Scholar 

  30. Vecchio S, Brunetti B (2013) Fluid Phase Equilib 338:148–154

    Article  CAS  Google Scholar 

  31. Vecchio S, Brunetti B (2007) J Chem Eng Data 52:1585–1594

    Article  CAS  Google Scholar 

  32. Vecchio S, Brunetti B (2005) J Chem Eng Data 50:666–672

    Article  CAS  Google Scholar 

  33. Langmuir I (1913) Phys Rev 2:329–342

    Article  Google Scholar 

  34. Chickos JS, Hesse DG, Liebman JF (1993) Struct Chem 4:261–269

    Article  CAS  Google Scholar 

  35. Monte MJS, Goncalves MV, Ribeiro da Silva MDMC (2010) J Chem Eng Data 55:2246–2251

    Article  CAS  Google Scholar 

  36. Plato C (1969) Anal Chem 41:330–336

    Article  CAS  Google Scholar 

  37. Sabbah R, Xu-Wu A, Chickos JS, Planas Leitão ML, Roux MV, Torres LA (1999) Thermochim Acta 331:93–204

    Article  CAS  Google Scholar 

  38. Brunetti B, Piacente V, Scardala P (2007) J Chem Eng Data 52:24–29

    Article  CAS  Google Scholar 

  39. De Kruif CG, Blok JG (1982) J Chem Thermodyn 14:201–206

    Article  Google Scholar 

  40. Stephenson RM, Malanowski S (1987) Handbook of the thermodynamics of organic compounds. Elsevier, New York, p 263

    Book  Google Scholar 

  41. Focke WW (2003) J Therm Anal Cal 74:97–107

    Article  CAS  Google Scholar 

  42. Monte MJS, Hillesheim DM (2001) J Chem Thermodyn 33:103–112

    Article  CAS  Google Scholar 

  43. Ribeiro da Silva MAV, Monte MJS (1990) Thermochim Acta 171:169–183

    Article  CAS  Google Scholar 

  44. Pinto SS, Diogo P, Guedes RC, Costa Gabral BJ, Minas de Piedade ME, Martinho Simões JA (2005) J Phys Chem A 109:9700–9708

    Article  CAS  Google Scholar 

  45. Ribeiro da Silva MAV, Matos MAR, Monte MJS, Hillesheim DM, Marques MCPO, Vieira NFTG (1999) J Chem Thermodyn 31:1429–1441

    Article  CAS  Google Scholar 

  46. Ribeiro da Silva MAV, Fonseca JMS, Carvalho RPBM, Monte MJS (2005) J Chem Thermodyn 37:271–279

    Article  CAS  Google Scholar 

  47. Lima CFRAC, Gomes LR, Santos LMNBF (2007) J Phys Chem A 111:10598–10603

    Article  CAS  Google Scholar 

  48. Ju K-S, Parales RE (2010) Microbiol Mol Biol Rev 74:250–272

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is indebted to Dr. Bruno Brunetti for his contribution in providing torsion–effusion experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Vecchio.

Additional information

This paper is devoted to Prof. Maria Victoria Roux in occasion of her 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vecchio, S. Thermogravimetric method for a rapid estimation of vapor pressure and vaporization enthalpies of disubstituted benzoic acids: an attempt to correlate vapor pressures and vaporization enthalpies with structure. Struct Chem 24, 1821–1827 (2013). https://doi.org/10.1007/s11224-013-0232-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0232-2

Keywords

Navigation