Skip to main content
Log in

Hydrogen bonding ability and acid–base behavior of formylphosphinous acid: an isostere of formohydroxamic acid

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The conformational isomerism, relative stabilities of isomeric forms, acid–base behavior, and hydrogen bonding of formylphosphinous acid (FPA), an isostere of formohydroxamic acid (FHA) and its tautomer formylphosphine oxide have been analyzed in the present study. Molecular orbital and density functional theory methods in conjunction with 6-31+G* basis set have been employed. The protonation, deprotonation, and hydrogen bonding abilities of FHA and FPA have been compared. FPA has P as preferred site of deprotonation like N in FHA, but they differ in their preferred site of protonation. With similar nature and orientation of H-bond donor and acceptor atoms, stabilization energy of most stable aggregate of FHA with water is 0.99 kcal/mol higher than that of similar aggregate of FPA with water. In addition, FPA is more stable than its corresponding oxide form in gas phase as well as on H-bonding interaction with single water molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bridger WA, Henderson JF (1983) Cell adenosine triphosphate physiology. Wiley, New York

    Google Scholar 

  2. Lehninger AL, Nelson DL, Cox MM (1993) Principles of biochemistry. Worth Publishers, New York

    Google Scholar 

  3. Babin YV, Prisyazhnyuk AV, Ustynyuk YA (2008) Russ J Phys Chem B 2:684

    Article  Google Scholar 

  4. Hoge B, Garcia P, Willner H, Oberhammer H (2006) Chem Eur J 12:3567

    Article  CAS  Google Scholar 

  5. Corbridge DEC (1995) Phosphorus: an outline of its chemistry, biochemistry and uses, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  6. Chatt J, Heaton BT (1968) J Chem Soc A 2745

  7. Griffiths JE, Burg AB (1960) J Am Chem Soc 82:1507

    Article  CAS  Google Scholar 

  8. Virlichie JL, Dagnac P (1977) Rev Chim Miner 14:355

    CAS  Google Scholar 

  9. Dobbie RC, Straughan BP (1971) Spectrochim Acta 27:255

    Article  CAS  Google Scholar 

  10. Dubrovina NV, Borner A (2004) Angew Chem 116:6007

    Article  Google Scholar 

  11. Heydorn LN, Burgers PC, Ruttink PJA, Terlouw JK (2003) Int J Mass Spectrom 228:759

    Article  CAS  Google Scholar 

  12. Wesolowski SS, Brinkmann NR, Valeev EF, Schaefer HF III, Repasky MP, Jorgensen WL (2002) J Chem Phys 116:112

    Article  CAS  Google Scholar 

  13. Hoge B, Thösen C, Herrmann T, Panne P, Patenburg I (2004) J Fluorine Chem 125:831

    Article  CAS  Google Scholar 

  14. Hoge B, Wiebe W, Hettl S, Neufeind S, Thösen C (2005) J Organomet Chem 690:2382

    Article  CAS  Google Scholar 

  15. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Rega N, Salvador P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES and Pople JA (2001) In: Gaussian98. Gaussian, Inc., Pittsburgh, PA

  16. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  17. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  18. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211

    Article  CAS  Google Scholar 

  19. Reed AE, Weinhold F, Curtiss LA (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  20. Reed AE, Schleyer PVR (1990) J Am Chem Soc 112:1434

    Article  CAS  Google Scholar 

  21. Bharatam PV, Iqbal P, Malde A, Tiwari R (2004) J Phys Chem A 108:10509

    Article  CAS  Google Scholar 

  22. Remko M, Liedl KR, Rode BM (1996) J Chem Soc Perkin Trans 2:1743

    Google Scholar 

  23. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  24. Kaur D, Kohli R (2008) Int J Quantum Chem 108:119

    Article  CAS  Google Scholar 

  25. Kaur D, Kohli R, Kaur RP (2008) J Mol Str (Theochem) 864:72

    Article  CAS  Google Scholar 

  26. Wu DH, Ho JJ (1998) J Phys Chem A 102:3582

    Article  CAS  Google Scholar 

  27. Kakkar R, Grover R, Chadha P (2003) Org Biomol Chem 1:2200

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damanjit Kaur.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 880 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, D., Kohli, R. Hydrogen bonding ability and acid–base behavior of formylphosphinous acid: an isostere of formohydroxamic acid. Struct Chem 23, 1879–1890 (2012). https://doi.org/10.1007/s11224-012-9998-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-9998-x

Keywords

Navigation