Skip to main content
Log in

A quantum chemical study of conformational and tautomeric preferences, intramolecular hydrogen bonding and π-electron delocalization on dinitrosomethane; in gas phase and water solution

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

HF, B3LYP, and MP2 methods with the standard basis set, 6-311++G(d,p), were employed to study various aspects of dinitrosomethane (DNM). These results are compared with the outcomes of G2, G2MP2, G3, and CBS-QB3 methods. In the present study, we first characterized the equilibrium conformations, especially global minima. In general, the nitroso-oxime (NO) tautomers of DNM are stabler than the dioxime and dinitroso ones. Furthermore, it was found that the stablest form of NO tautomer is global minima among the known local minima. Surprisingly, the chelated form of NO tautomer, with O–H···O intramolecular hydrogen bond (IMHB), is less stable than the global minimum. In spite of this instability, we comprehensively studied various aspects of IMHB to evaluate the effect of heteroatom’s (N). The results of open–close and related rotamer models predict that the heteroatoms weaken the hydrogen bond, whereas, the geometric, topologic, and natural bond orbital parameters emphasize on opposite conclusion. The HOMA of aromaticity aromaticity index clearly predicts that the π-electron delocalization of chelated form of NO tautomer is greater than the malonaldehyde. Finally, the solvent effects on the properties of DNM tautomers have been estimated by continuum (PCM, IPCM, and SCIPCM), discrete, and mixed models. Theoretical results clearly show that the potential energy surface of DNM, especially global minima, is strongly affected by the solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boyer JH (1969) The chemistry of the nitro and nitroso groups. Interscience Publisher, New York

    Google Scholar 

  2. Schwarz H, Levsen K (1982) The chemistry of amine, nitroso and nitro compounds and their derivatives. Wiley, New York

    Google Scholar 

  3. Allman R (1975) In: Patai S (ed) The chemistry of hydrazo azo and azoxy groups. Wiley, New York

    Google Scholar 

  4. Rappoport Z, Leibman JF (2009) In: Patai S (ed) The chemistry of hydroxylamines oximes and hydroxamic acids. Wiley, New York

    Google Scholar 

  5. Johnston T, Heicken J (1966) J Phys Chem 70:3088

    Article  CAS  Google Scholar 

  6. Turner PH, Cox AP (1978) J Chem Soc Faraday Trans II 74:533

    Article  CAS  Google Scholar 

  7. Thomassy FA, Lampe FW (1970) J Phys Chem 74:1188

    Article  CAS  Google Scholar 

  8. Gowenlock BG, Batt L (1998) J Mol Struct (THEOCHEM) 454:103

    Article  CAS  Google Scholar 

  9. Toniolo A, Persico MJ (2001) J Chem Phys 115:817

    Article  Google Scholar 

  10. Janzen EG, Haire DL (1990) Advances in free radical chemistry. JAI Press, Greenwich

    Google Scholar 

  11. Roohi H, Gholipour Y (2008) Int J Quant Chem 108:462

    Article  CAS  Google Scholar 

  12. Adeney PD, Bouma WJ, Radom L, Rodwell WR (1980) J Am Chem Soc 102:4069

    Article  CAS  Google Scholar 

  13. Cho JK, Lee I (1984) Bull Korean Chem Soc 5:179

    CAS  Google Scholar 

  14. Veladimiroff T (1997) J Mol Struct (THEOCHEM) 401:141

    Article  Google Scholar 

  15. Liang GM, Ren Y, Chu SY, Wong NB (2007) J Theor Comput Chem 6:187

    Article  CAS  Google Scholar 

  16. Dolgov EK, Bataev VA, Pupyshev VI, Godunov IA (2004) Int J Quant Chem 96:589

    Article  CAS  Google Scholar 

  17. Arenas JF, Otero JC, Pelaez D, Soto J (2006) J Org Chem 71:983

    Article  CAS  Google Scholar 

  18. Long JA, Harris NJ, Lammertsma K (2001) J Org Chem 66:6762

    Article  CAS  Google Scholar 

  19. Gilli G, Gilli P (2009) The nature of hydrogen bond. Oxford University Press, Oxford

    Book  Google Scholar 

  20. Krygowski TM, Zachara-Horeglad JE, Palusiak M (2010) J Org Chem 75:4944–4949

    Article  CAS  Google Scholar 

  21. Palusiak M, Simon S, Sola M (2009) J Org Chem 74:2059–2066

    Article  CAS  Google Scholar 

  22. Palusiak M, Simon S, Sola M (2006) J Org Chem 71:5241–5248

    Article  CAS  Google Scholar 

  23. Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) J Am Chem Soc 111:1023–1028

    Article  CAS  Google Scholar 

  24. Gilli G, Bertolasi V (1990) In: Rappoport Z (ed) The chemistry of enols, chap. 13. Wiley, Chichester

    Google Scholar 

  25. Grabowski SJ (2004) J Phys Org Chem 17:18–31

    Article  CAS  Google Scholar 

  26. Nowroozi A, Tayyari SF, Rahemi H (2003) Spectrochim. Acta A 59:1757

    Article  Google Scholar 

  27. Nowroozi A, Raissi H (2006) J Mol Struct (THEOCHEM) 759:93

    Article  CAS  Google Scholar 

  28. Nowroozi A, Roohi H, Sadeghi MS, Sheibaninia M (2011) Int J Quant Chem 111:578

    Article  CAS  Google Scholar 

  29. Nowroozi A, Jalbout AF, Roohi H, Sadeghi MS, Raissi H (2009) Int J Quant Chem 109:1505

    Article  CAS  Google Scholar 

  30. Fantoni AC, Caminati W (1996) Mol Struct (THEOCHEM) 376:33

    CAS  Google Scholar 

  31. Brand H, Liebmam JF, Schulz A (2008) Eur J Org Chem 4665

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zarzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul A G, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, and Pople JA(2003) Gaussian Inc. Pittsburgh

  33. Biegler-König F, Schönbohm J, Bayles D (2000) AIM2000: a program to analyze and visualize atoms in molecules. University of Applied Science, Bielefeld

  34. Glendening DE, Reed AE, Carpenter JE, Weinhold F NBO, Version 3.1

  35. Schuster P, Zundel G (1976) The hydrogen bond recent development in theory and experiment. Elsevier Science Publishing Co Inc., Amesterdam, The Netherlands

    Google Scholar 

  36. Nowroozi A, Raissi H, Farzad F (2005) J Mol Struct (THEOCHEM) 730:161

    Article  CAS  Google Scholar 

  37. Espinosa E, Molins E (2006) J Chem Phys 113:5686

    Article  Google Scholar 

  38. Musin RN, Mariam YH (2006) J Phys Org Chem 19:425

    Article  CAS  Google Scholar 

  39. Miertus S, Tomasi J (1982) J Chem Phys 65:239

    CAS  Google Scholar 

  40. Cossi M, Barone V, Cammi R, Tomasi J (1996) J Chem Phys Lett 255:327

    Article  CAS  Google Scholar 

  41. Cramer CJ, Truhlar DG (1995) Rev Comput Chem 6:1

    Article  CAS  Google Scholar 

  42. Tomasi J, Persico M (1994) Chem Rev 94:2027

    Article  CAS  Google Scholar 

  43. Zhan CG, Chipman DM (1998) J Chem Phys 109:10543

    Article  CAS  Google Scholar 

  44. Foresman JB, Keith TA, Wiberg KB, Snoonian J, Frisch MJ (1996) J Phys Chem 100:16098–16104

    Article  CAS  Google Scholar 

  45. Nowroozi A, Raissi H, Hajiabadi H, Mohammadzadeh P (2012) Int J Quant Chem 112:489

    Article  CAS  Google Scholar 

  46. Bankiewicz B, Matczak P, Palusiak M (2012) J Phys Chem A 116:452–459

    Article  CAS  Google Scholar 

  47. Bankiewicz B, Palusiak M (2011) J Mol Struct (THEOCHEM) 966:113

    CAS  Google Scholar 

  48. Grabowski SJ (2001) J Mol Struct (THEOCHEM) 562:137

    CAS  Google Scholar 

  49. Plausiak M, Simon S, Sola M (2007) Chem Phys 342:43

    Article  Google Scholar 

  50. Scheiner S (1994) J Mol Struct (THEOCHEM) 307:65

    Article  Google Scholar 

  51. Scheleyer PVR (2005) Chem Rev 105:3433

    Article  Google Scholar 

  52. Gonzalez L, Mo O, Yanez M (1997) J Phys Chem A 10:9710

    Article  Google Scholar 

  53. Krygowski TM, Cyranski M (2001) Chem Rev 101:1385

    Article  CAS  Google Scholar 

  54. Kruszewski J, Krygowski TM (1972) Tetrahedron Lett 3839

  55. Krygowski TM (1993) J Chem Inf Comput Sci 33:70

    Article  CAS  Google Scholar 

  56. Parkanyi C (1998) Theoretical organic chemistry. Elsevier Science BV, Amsterdam, The Netherlands

    Google Scholar 

  57. Cysewski P (2005) J Mol Struc (THEOCHEM) 714:29

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mohammadzadeh Jahani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadzadeh Jahani, P., Nowroozi, A., Hajiabadi, H. et al. A quantum chemical study of conformational and tautomeric preferences, intramolecular hydrogen bonding and π-electron delocalization on dinitrosomethane; in gas phase and water solution. Struct Chem 23, 1941–1951 (2012). https://doi.org/10.1007/s11224-012-9997-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-9997-y

Keywords

Navigation