Skip to main content
Log in

Substituent effects and aromaticity of six-membered heterocycles

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Structure, aromaticity, relative stability, and conformational flexibility of nitro and amino substituted monoheterocyclic analogous of benzene were studied by ab initio quantum-chemical method at MP2/aug-cc-pvDZ level of theory. Amino derivatives were found to be slightly less aromatic than nitro derivatives. Strong push–pull interactions were found in α- and γ-aminochalcogenopyrylium cations and, in less extent, in α- and γ-aminopyrydines. These molecules are less aromatic but more stable, as compare to their β-isomers. All heterocycles with 3rd and 4th row heteroatoms reveal C–NO2 bond elongation accompanied by C–Heteroatom bond shortening in β-nitro isomers, and strong inequality of two endocyclic C–Heteroatom bonds in α-amino isomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Balaban AT, Oniciu DC, Katritzky AR (2004) Chem Rev 104:2777–2812

    Article  CAS  Google Scholar 

  2. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. W. H. Freeman & Company, New York

    Google Scholar 

  3. Buchardt O (1976) Photochemistry of heterocyclic compounds. Wiley, New York

    Google Scholar 

  4. Reid ST (1970) Adv Heterocycl Chem 11:1–121

    Article  CAS  Google Scholar 

  5. Pozharskii AF, Soldatenkov AT, Katritzky AR (2011) Heterocycles in life and society: an introduction to heterocyclic chemistry, biochemistry and applications. Wiley, New York

  6. Strekowski L (2008) Topics in heterocyclic chemistry 14, heterocyclic polymethine dyes. Springer, NY, pp 1–241

  7. Broughton HB, Watson IA (2004) J Mol Graph Model 23:51–58

    Article  CAS  Google Scholar 

  8. Eguchi S (2006) Topics in heterocyclic chemistry 6, bioactive heterocycles I. Springer, NY, pp 1–220

  9. Mannhold R (ed) (2007) Molecular drug properties. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim

    Google Scholar 

  10. Bettarini F, Piccardi P (2010) ChemInform 30:no. doi:10.1002/chin.199937310

  11. Agrawal JP, Hodgson R (2007) Organic chemistry of explosives. Wiley, Chichester

    Google Scholar 

  12. Balaban AT (2008) Krygowski TM, Cyranski MK (eds) Topics in heterocyclic chemistry 19, aromaticity in heterocyclic compounds. Springer, NY, pp 203–246

  13. Hückel E (1932) Z Phys 76:628–648

    Article  Google Scholar 

  14. Pozharskii AF (1985) Teoreticheskie Osnovy Khimii Geteroziklov. Khimiya, Moscow (in Russian)

    Google Scholar 

  15. Katritzky AR, Pozharskii AF (2000) Handbook of heterocyclic chemistry. Elsevier, Amsterdam

    Google Scholar 

  16. Krygowski TM, Cyranski MK (eds) (2009) Topics in heterocyclic chemistry 19, aromaticity in heterocyclic compounds. Springer, NY, pp 1–344

  17. Priyakumar UD, Sastry GN (2003) Proc Indian Acad Sci (Chem Sci) 115:49–66

    Article  CAS  Google Scholar 

  18. Kassaee MZ, Jalalimanesh N, Musavi SM (2007) J Mol Struct Theochem 816:153–160

    Article  CAS  Google Scholar 

  19. Ebrahimi AA, Ghiasi R, Foroutan-Nejad C (2010) J Mol Struct Theochem 941:47–52

    Article  CAS  Google Scholar 

  20. Omelchenko IV, Shishkin OV, Gorb L, Leszczynski J, Fias S, Bultinck P (2011) Phys Chem Chem Phys 13:20536–20548

    Article  CAS  Google Scholar 

  21. Malkin J (1992) Photophysical and photochemical properties of aromatic compounds. CRC Press, Boca Raton

  22. Wiberg KB, Nakaji D, Breneman CM (1989) J Am Chem Soc 111:4178–4190

    Article  CAS  Google Scholar 

  23. Zahradníak R, Koutecký J (1965) Adv Heterocycl Chem 5:69–118

    Article  Google Scholar 

  24. Abramovitch RA, Saha JG (1966) Adv Heterocycl Chem 6:229–345

    Article  CAS  Google Scholar 

  25. Tiŝler M, Stanovnik B (1990) Adv Heterocycl Chem 49:385–474

    Article  Google Scholar 

  26. Kobylecki RJ, Mckillop A (1976) Adv Heterocycl Chem 19:215–278

    Article  CAS  Google Scholar 

  27. Dewar MJS, Grisdale PJ (1962) J Am Chem Soc 84:3548–3553

    Article  CAS  Google Scholar 

  28. Clark DT, Scanlan IW (1974) J Chem Soc Faraday Trans 2(70):1222

    Google Scholar 

  29. Hodges RV, Beauchamp JL, Ashe AJ, Chan WT (1985) Organometallics 4:457–461

    Article  CAS  Google Scholar 

  30. Ashe AJ, Chan W-T, Smith TW, Taba KM (1981) J Org Chem 46:881–885

    Article  CAS  Google Scholar 

  31. Ashe AJ, Jones GL, Miiller FA (1982) J Mol Struct 78:169–183

    Article  CAS  Google Scholar 

  32. Balaban AT (2010) Adv Heterocycl Chem 99:61–105

    Article  CAS  Google Scholar 

  33. Eicher T, Hauptmann S (2003) The chemistry of heterocycles. Wiley-VCH Verlag GmbH & Co, KGaA, Grünstadt

    Book  Google Scholar 

  34. Kleinpeter E, Spitzner R, Schroth W (1989) Magn Res Chem 27:713–718

    Article  CAS  Google Scholar 

  35. Schroth W (1989) Rev Roum Chim 34:271

    CAS  Google Scholar 

  36. Barnes JC, Paton JD, Spitzner R, Schroth W (1990) Tetrahedron 46:2935–2942

    Article  CAS  Google Scholar 

  37. Doddi G, Ercolani G (1994) Adv Heterocycl Chem 60:65–195

    Article  CAS  Google Scholar 

  38. Balaban AT, Dinculescu A, Dorofeenko GN, Fischer GW, Koblik AV, Mezheritskii VV, Schroth W (1982) Adv Heterocycl Chem Suppl 2:1

    Google Scholar 

  39. Baldridge KK, Jolla L, Uzan O, Martin JML (2000) Organometallics 19:1477–1487

    Article  CAS  Google Scholar 

  40. Lee VY, Sekiguchi A, Ichinohe M, Fukaya N (2000) J Organomet Chem 611:228–235

    Article  CAS  Google Scholar 

  41. Lee VY, Sekiguchi A (2007) Angew Chem Int Ed Eng 46:6596–6620

    Article  CAS  Google Scholar 

  42. Tokitoh N (2004) Bull Chem Soc Jpn 77:429–441

    Article  CAS  Google Scholar 

  43. El-Nahas AM, Johansson M, Ottosson H (2003) Organometallics 22:5556–5566

    Article  CAS  Google Scholar 

  44. Fossey J, Loupy A, Strzelecka H (1981) Tetrahedron 37:1935–1941

    Article  CAS  Google Scholar 

  45. Harris G, Stewart R (1977) Can J Chem 55:11–14

    Google Scholar 

  46. Alonso M, Miranda C, Martín N, Herradón B (2011) Phys Chem Chem Phys 13:20564–20574

    Article  CAS  Google Scholar 

  47. Shishkin OV, Omelchenko IV, Krasovska MV, Zubatyuk RI, Gorb L, Leszczynski J (2006) J Mol Struct 791:158–164

    Article  CAS  Google Scholar 

  48. Omelchenko IV, Shishkin OV, Gorb L, Hill FC, Leszczynski J (2012) Struct Chem. doi:10.1007/s11224-012-9971-8

    Google Scholar 

  49. Alonso M, Herradón B (2010) Phys Chem Chem Phys 12:1305–1317

    Article  CAS  Google Scholar 

  50. Nakata N, Takeda N, Tokitoh N (2002) J Am Chem Soc 124:6914–6920

    Article  CAS  Google Scholar 

  51. Apeloig Y, Karni M (1984) J Am Chem Soc 106:6676–6682

    Article  CAS  Google Scholar 

  52. Baldridge KK, Gordon MS (1988) Organometallics 7:144–155

    Article  CAS  Google Scholar 

  53. Doddi G, Ercolani G (1989) J Chem Soc Perkin Trans 2:1393

    Google Scholar 

  54. Favixi G, Gamba A, Bellobono IR (1967) Spectrochim Acta Part A 23:89–108

    Article  Google Scholar 

  55. Oudar JL, Chemla DS (1977) J Chem Phys 66:2664

    Article  CAS  Google Scholar 

  56. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  57. Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  58. Minkin VI, Glukhovtsev MN, Simkin BY (1994) Aromaticity and antiaromaticity: electronic and structural aspects. Wiley, New York

    Google Scholar 

  59. Bird C (1992) Tetrahedron 48:335–340

    Article  CAS  Google Scholar 

  60. Stanger A (2006) J Org Chem 71:883–893

    Article  CAS  Google Scholar 

  61. Cyranski MK (2005) Chem Rev 105:3773–3811

    Article  CAS  Google Scholar 

  62. Gordy W (1947) J Chem Phys 15:305

    Article  CAS  Google Scholar 

  63. Wiberg KB (1968) Tetrahedron 24:1083–1096

    Article  CAS  Google Scholar 

  64. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  65. Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf CC, Puchta R, Schleyer PVR (2006) Org Lett 8:863–866

    Article  CAS  Google Scholar 

  66. Shishkin OV (1998) J Mol Struct 447:1–5

    Article  CAS  Google Scholar 

  67. Shishkin OV, Gorb L, Leszczynski J (2000) Chem Phys Lett 330:603–611

    Article  CAS  Google Scholar 

  68. Shishkin OV, Pichugin KY, Gorb L, Leszczynski J (2002) J Mol Struct 616:159–166

    Article  CAS  Google Scholar 

  69. Zhigalko MV, Shishkin OV, Gorb L, Leszczynski J (2004) J Mol Struct 693:153–159

    Article  CAS  Google Scholar 

  70. Gaussian 03, Revision C.02. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian Inc., Wallingford

  71. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, Van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181:1477–1489

    Article  CAS  Google Scholar 

  72. Allen FH (2002) Acta Cryst Sect B 58:380–388

    Article  Google Scholar 

  73. Türker L, Bayar ÇÇ, Balaban AT (2010) Polycyclic Aromat Compd 30:99–111

    Google Scholar 

  74. Cyranski MK, Krygowski TM, Katritzky AR, Schleyer PVR (2002) J Org Chem 67:1333–1338

    Article  CAS  Google Scholar 

  75. Stepien BT, Cyranski MK, Krygowski TM (2001) Chem Phys Lett 350:537–542

    Article  CAS  Google Scholar 

  76. Jug K, Koster AM (1991) J Phys Org Chem 4:163–169

    Article  CAS  Google Scholar 

  77. Kleinpeter E, Spitzner R, Schroth W, Pihlaja K, Mattinen J (1988) Magn Res Chem 26:707–713

    Article  CAS  Google Scholar 

  78. Priyakumar UD, Sastry GN (2000) J Am Chem Soc 122:11173–11181

    Article  CAS  Google Scholar 

  79. Krygowski TM, Stępień BT, Cyrański MK (2005) Int J Mol Sci 6:45–51

    Article  CAS  Google Scholar 

  80. Hammett LP (1937) J Am Chem Soc 59:96–103

    Article  CAS  Google Scholar 

  81. Shaik SS, Hiberty PC, Lefour JM, Ohanessian G (1987) J Am Chem Soc 109:363–374

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina V. Omelchenko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 285 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omelchenko, I.V., Shishkin, O.V., Gorb, L. et al. Substituent effects and aromaticity of six-membered heterocycles. Struct Chem 24, 725–733 (2013). https://doi.org/10.1007/s11224-012-0124-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0124-x

Keywords

Navigation