Skip to main content

Advertisement

Log in

Ca2+- and Mg2+-doped covalent organic frameworks exhibiting high hydrogen and acetylene storage

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A multiscale theoretical investigation has been performed to study the hydrogen and acetylene storage in Ca2+- and Mg2+-doped COFs (COF-105 and COF-108). The first-principles calculations show that the Ca2+ and Mg2+ can be immobilized at the COFs surfaces, and the doped Ca and Mg cations can adsorb five H2 molecules and three C2H2 molecules with ideal binding energies. The Grand Canonical Monte Carlo (GCMC) simulations were carried out to obtain the hydrogen and acetylene uptakes of Ca2+- and Mg2+-doped COFs at room temperature in the different pressure ranges. Our results demonstrate that, at T = 298 K and p = 100 bar, the total gravimetric uptakes of H2 in Ca2+-doped COF-105 and COF-108 reach 6.78 and 6.54 wt%, respectively, and a higher uptakes of 7.14 and 7.27 wt% have been reached for Mg2+-doped COF-105 and COF-108, respectively. At T = 298 K and p = 1 bar, the acetylene uptakes of Ca2+-doped COF-105, Ca2+-doped COF-108, Mg2+-doped COF-105, and Mg2+-doped COF-108 are 406.42, 366.24, 308.07, and 319.88 cm3/g (corresponding to the excess uptakes of 358.37, 316.38, 236.7109, and 245.42 cm3/g), respectively. The Ca2+-doped COF-105 displays a highest acetylene storage capacity among all materials reported. The Ca2+- and Mg2+-doped COFs can be very practical hydrogen or acetylene storage medium in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen B, Eddaoudi M, Hyde ST, O’Keeffe M, Yaghi OM (2001) Science 291:1021

    Article  CAS  Google Scholar 

  2. Eddaoudi M, Kim J, Rosi NL, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Science 295:469

    Article  CAS  Google Scholar 

  3. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Nature 402:276

    Article  CAS  Google Scholar 

  4. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Science 300:1127

    Article  CAS  Google Scholar 

  5. Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM (2005) Science 310:1166

    Article  Google Scholar 

  6. Côté AP, El-Kaderi HM, Furukawa H, Hunt JR, Yaghi OM (2007) J Am Chem Soc 129:12914

    Article  Google Scholar 

  7. El-Kaderi HM, Hunt JR, Mendoza-Cortes JL, Côté AP, Taylor RE, O’Keeffe M, Yaghi OM (2007) Science 316:268

    Article  CAS  Google Scholar 

  8. Hunt JR, Doonan CJ, LeVangie JD, Cote AP, Yaghi OM (2008) J Am Chem Soc 130:11872

    Article  CAS  Google Scholar 

  9. Furukawa H, Yaghi OM (2009) J Am Chem Soc 131:8875

    Article  CAS  Google Scholar 

  10. Garberoglio G (2007) Langmuir 23:12154

    Article  CAS  Google Scholar 

  11. Klontzas E, Tylianakis E, Froudakis GE (2008) J Phys Chem C 112:9095

    Article  CAS  Google Scholar 

  12. Mendoza-Cortés JL, Han SS, Furukawa H, Yaghi OM, Goddard WA III (2010) J Phys Chem A 114:10824

    Article  Google Scholar 

  13. Lan J, Cao D, Wang W (2010) Langmuir 26:220

    Article  CAS  Google Scholar 

  14. Lan J, Cao D, Wang W, Smit B (2010) ACS Nano 4:4225

    Article  CAS  Google Scholar 

  15. Niu J, Rao BK, Jena P (1992) Phys Rev Lett 68:2277

    Article  CAS  Google Scholar 

  16. Rao BK, Jena P (1992) Europhys Lett 20:307

    Article  CAS  Google Scholar 

  17. Han SS, Goddard WA III (2007) J Am Chem Soc 129:8422

    Article  CAS  Google Scholar 

  18. Klontzas E, Mavrandonakis A, Tylianakis E, Froudakis GE (2008) Nano Lett 8:1572

    Article  Google Scholar 

  19. Mavrandonakis A, Tylianakis E, Stubos AK, Froudakis GE (2008) J Phys Chem C 112:7290

    Article  CAS  Google Scholar 

  20. Cha M-H, Nguyen MC, Lee Y-L, Im J, Ihm J (2010) J Phys Chem C 114:14276

    Article  CAS  Google Scholar 

  21. Stergiannakos T, Tylianakis E, Klontzas E, Froudakis GE (2010) J Phys Chem C 114:16855

    Article  CAS  Google Scholar 

  22. Cao D, Lan J, Wang W, Smit B (2009) Angew Chem Int Ed 48:4730

    Article  CAS  Google Scholar 

  23. Lan J, Cao D, Wang W (2010) J Phys Chem C 114:3108

    Article  CAS  Google Scholar 

  24. Li F, Zhao J-J, Johansson B, Sun L-X (2010) Int J Hydrogen Energy 35:266

    Article  CAS  Google Scholar 

  25. Sun YY, Lee K, Kim Y-H, Zhang SB (2009) Appl Phys Lett 95:033109

    Article  Google Scholar 

  26. Budavari S (1996) The Merck index, 12th edn. Merck Research Laboratories, NJ

    Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.02. Gaussian, Inc., Pittsburgh

  28. Becke AD (1992) J Chem Phys 97:9173

    Article  CAS  Google Scholar 

  29. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  30. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  31. Rassolov VA, Pople JA, Ratner MA, Windus TL (1998) J Chem Phys 109:1223

    Article  CAS  Google Scholar 

  32. Hariharan PC, Pople JA (1973) Theor Chim Acta (Berl) 28:213

    Article  CAS  Google Scholar 

  33. Riley KE, Op’t Holt BT, Merz KM Jr (2007) J Chem Theory Comput 3:407

    Article  CAS  Google Scholar 

  34. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106:1063

    Article  CAS  Google Scholar 

  35. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  36. Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  37. Yang Q, Zhong C (2005) J Phys Chem B 109:11862

    Article  CAS  Google Scholar 

  38. Johnson RD NIST computational chemistry comparison and benchmark database, NIST Standard Reference Database Number 101. www.cccbdb.nist.gov. Accessed August 2011

  39. Fischer M, Hoffmann F, Fröba M (2010) ChemPhysChem 11:2220

    Article  CAS  Google Scholar 

  40. Singh UC, Kollman PA (1984) J Comput Chem 5:129

    Article  CAS  Google Scholar 

  41. Besler BH, Merz KM Jr, Kollman PA (1990) J Comput Chem 11:431

    Article  CAS  Google Scholar 

  42. Jorgensen WL, Madura JD, Swenson CJ (1984) J Am Chem Soc 106:6638

    Article  CAS  Google Scholar 

  43. Ghorai PK, Yashonath S, Demontis P, Suffritti GB (2003) J Am Chem Soc 125:7116

    Article  CAS  Google Scholar 

  44. Gautam S, Mitra S, Mukhopadhyay R, Chaplot SL (2006) Phys Rev E 74:041202

    Article  Google Scholar 

  45. Rappé AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) J Am Chem Soc 114:10024

    Article  Google Scholar 

  46. Garberoglio G, Skoulidas AI, Johnson JK (2005) J Phys Chem B 109:13094

    Article  CAS  Google Scholar 

  47. Yang Q-Y, Zhong C-L (2009) Langmuir 25:2302

    Article  CAS  Google Scholar 

  48. Skoulidas AI (2004) J Am Chem Soc 126:1356

    Article  CAS  Google Scholar 

  49. Babarao R, Jiang J, Sandler SI (2009) Langmuir 25:5239

    Article  CAS  Google Scholar 

  50. Breneman CM, Wiberg KB (1990) J Comput Chem 11:361

    Article  CAS  Google Scholar 

  51. Xu Q, Liu D, Yang Q-Y, Zhong C-L, Mi J-G (2010) J Mater Chem 20:706

    Article  CAS  Google Scholar 

  52. Fu J, Sun H (2009) J Phys Chem C 113:21815

    Article  CAS  Google Scholar 

  53. Heinz H, Suter UW (2004) J Phys Chem B 108:18341

    Article  CAS  Google Scholar 

  54. Rappé AK, Goddard WA III (1991) J Phys Chem 95:3358

    Article  Google Scholar 

  55. Gupta A, Chempath S, Sanborn MJ, Clark LA, Snurr RQ (2003) Mol Simul 29:29

    Article  CAS  Google Scholar 

  56. Sun Q, Wang Q, Jena P, Kawazoe Y (2005) J Am Chem Soc 127:14582

    Article  CAS  Google Scholar 

  57. Kandalam AK, Kiran B, Jena P (2008) J Phys Chem C 112:6181

    Article  CAS  Google Scholar 

  58. Kiran B, Kandalam AK, Jena P (2006) J Chem Phys 124:224703

    Article  Google Scholar 

  59. Jhi S-H (2006) Phys Rev B 74:155424

    Article  Google Scholar 

  60. Lu T GsGrid: extracting data from Gaussian grid file and grid file calculation. http://gsgrid.codeplex.com. Accessed 24 October 2010

  61. http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/storage.pdf, updated 2011

  62. Assfour B, Seifert G (2010) Micropor Mesopor Mat 133:59

    Article  CAS  Google Scholar 

  63. Chui SS-Y, Lo SM-F, Charmant JPH, Orpen AG, Williams ID (1999) Science 283:1148

    Article  CAS  Google Scholar 

  64. Rood JA, Noll BC, Henderson KW (2006) Inorg Chem 45:5521

    Article  CAS  Google Scholar 

  65. Xiang S-C, Zhou W, Gallegos JM, Liu Y, Chen B (2009) J Am Chem Soc 131:12415

    Article  CAS  Google Scholar 

  66. Hu Y-X, Xiang S-C, Zhang W-W, Zhang Z-X, Wang L, Bai J-F, Chen B-L (2009) Chem Commun 7551

Download references

Acknowledgments

H. Zhang acknowledges financial support from the National Natural Science Foundation of China (NSFC. Grant No. 11074176 and NSAF. Grant No. 10976019) and the support from Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100181110080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, JH., Zhang, H., Gong, M. et al. Ca2+- and Mg2+-doped covalent organic frameworks exhibiting high hydrogen and acetylene storage. Struct Chem 24, 691–703 (2013). https://doi.org/10.1007/s11224-012-0120-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0120-1

Keywords

Navigation