Skip to main content
Log in

A computational investigation of the electronic properties of Octahedral Al n N n and Al n P n cages (n = 12, 16, 28, 36, and 48)

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Density functionla theory (DFT) calculations are performed to characterize geometric and electronic features of the octahedral Al n N n and Al n P n cages (n = 12, 16, 28, 32, and 48). Toward this aim, 15N, 27Al, and 31P chemical shielding (CS) tensors as well as natural charge analyses are calculated for the optimized structures. CS parameters detect three distinct electronic environments for atoms within the Al n N n and Al n P n cages. The chemical shifts of N2 sites belonging to a hexagon and surrounded by three hexagons and a square obtained are different from those of N3 sites belonging to a hexagon that is surrounded only by hexagons—due to different curvatures exerted at the sites with different local structures. In addition, there is an increasing tendency in the Δσ values of the three local structures, Δσ (N1) > Δσ (N2) > Δσ (N3), N1 sites belonging to four-membered rings. The chemical shieldings of those Al and P sites belonging to a hexagon that is surrounded only by hexagons in the cages (360.7–366.7 and 496.5–514.7 ppm) are close to those previously reported for AlP nanotubes. Three distinct electrostatic environments around the N, Al, and P nuclei are also confirmed by the calculated natural charges. It should be noted that the positively charged Al atoms on the cages turn out to be the available sites for adsorption of H2 molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kroto H, Heath J, O’Brien S, Curl R, Smalley R (1985) Nature 318:162–163

    Article  CAS  Google Scholar 

  2. Iijima S (1991) Nature (London) 354:56–58

    Article  CAS  Google Scholar 

  3. Loiseau A, Willaime F, Demoncy N, Schramcheko N, Hug G, Colliex C, Pascard H (1998) Carbon 36:743–752

    Article  CAS  Google Scholar 

  4. Chen X, Ma J, Hu Z, Wu Q, Chen Y (2005) J Am Chem Soc 127:17144–17145

    Article  Google Scholar 

  5. Burton GR, Xu C, Arnold CC, Neumark DM (1996) J Chem Phys 104:2757–2764

    Article  CAS  Google Scholar 

  6. Asmis KR, Taylor TR, Neumark DM (1999) J Chem Phys 111:10491–10500

    Article  CAS  Google Scholar 

  7. Taylor TR, Asmis KR, Xu CS, Neumark DM, Chem (1998) Phys Lett 297:133–140

    CAS  Google Scholar 

  8. Zhang D, Zhang RQ (2003) Chem Phys Lett 37:426–432

    Article  Google Scholar 

  9. Chen X, Ma J, Hu Z, Wu Q, Chen Y (2005) J Am Chem Soc 127:7982–7983

    Article  CAS  Google Scholar 

  10. Hashman TW, Pratsinis SE (1992) J Am Ceram Soc 75:920–928

    Article  CAS  Google Scholar 

  11. Wang Q, Sun Q, Jena P, Kawazoe Y, Wang Q (2009) ACS Nano 3:621–626

    Article  CAS  Google Scholar 

  12. Lee SM, Lee YH, Hwang YG, Elsner J, Porezag D, Frauenheim T (1999) Phys Rev B 60:7788–7791

    Article  CAS  Google Scholar 

  13. Seifert G, Hernandez E (2000) Chem Phys Lett 318:355–360

    Article  CAS  Google Scholar 

  14. Wu HS, Zhang FQ, Xu XH, Zhang CJ, Jiao H (2003) J Phys Chem A 107:204–209

    Article  CAS  Google Scholar 

  15. Hacohen YR, Grunbaum E, Tenne R, Hutchison JL (1998) Nature 395:336–337

    Article  CAS  Google Scholar 

  16. Jensen F, Toflund H (1993) Chem Phys Lett 201:89–96

    Article  CAS  Google Scholar 

  17. Oku T, Nishiwaki A, Narita I, Gonda M (2003) Chem Phys Lett 380:620–623

    Article  CAS  Google Scholar 

  18. Tang C, Bando Y, Sato T (2002) Chem Phys Lett 362:185–189

    Article  CAS  Google Scholar 

  19. Oku T, Hirano T, Kuno M, Kusunose T, Niihara K, Suganuma K (2000) Mater Sci Eng B 74:206–217

    Article  Google Scholar 

  20. Wang R, Zhang D, Liu C (2005) Chem Phys Lett 411:333–338

    Article  CAS  Google Scholar 

  21. Oku T, Nishiwaki A, Narita I (1993) Sci Tech Adv Mater 5:635–638

    Article  Google Scholar 

  22. Jensen F, Toflund H (2004) Chem Phys Lett 201:89–96

    Article  Google Scholar 

  23. Zhu HY, Schmaltz TG, Klein DJ (1997) Int J Quantum Chem 63:393–401

    Article  CAS  Google Scholar 

  24. Seifert G, Fowler RW, Mitchell D, Porezag D, Frauenheim T (1997) Chem Phys Lett 268:352–358

    Article  CAS  Google Scholar 

  25. Johnson RD, Meijer G, Salem JR, Bethune DS (1991) J Am Chem Soc 113:3619–3621

    Article  CAS  Google Scholar 

  26. Taylor R, Hare JP, Abdul-Sada AK, Kroto HW (1990) J Chem Soc Chem Commun 20:1423–1425

    Article  Google Scholar 

  27. Barone V, Koller A, Scuseria GE (2006) J Phys Chem A 110:10844–10847

    Article  CAS  Google Scholar 

  28. Bovey FA (1988) Nuclear magnetic resonance spectroscopy. Academic Press, San Diego

    Google Scholar 

  29. Taylor R, Langley GJ, Avent AG, Dennis TJS, Kroto HW, Walton DRM (1993) J Chem Soc Perkin Trans 2:1029–1036

    Google Scholar 

  30. Kikuchi K, Nakahara N, Wakabayashi T, Suzuki S, Shiromaru H, Miyake Y, Saito K, Ikemoto L, Kainosho M, Achiba Y (1992) Nature 357:142–145

    Article  CAS  Google Scholar 

  31. Ghafouri R, Anafcheh M (2012) Physica E 44:1386–1391

    Article  CAS  Google Scholar 

  32. Anafcheh M, Ghafouri R (2012) Struct Chem. doi:10.1007/s11224-012-0002-6

    Google Scholar 

  33. Anafcheh M, Hadipour NL (2011) Physica E 44:400–404

    Article  CAS  Google Scholar 

  34. Anafcheh M, Ghafouri R (2012) Solid State Sci 14:381–386

    Article  CAS  Google Scholar 

  35. Anafcheh M, Ghafouri R, Naderi F (2012). doi:10.1016/j.physe.2012.05.031

  36. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  37. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian Inc., Pittsburgh

    Google Scholar 

  39. Hariharan PC, Pople JA (1974) Mol Phys 27:209–214

    Article  CAS  Google Scholar 

  40. Zhang Y, Wu A, Xu X, Yan Y (2007) J Phys Chem A 111:9431–9437

    Article  CAS  Google Scholar 

  41. Wolinski K, Hilton JF, Pulay P (1990) J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  42. Jameson CJ, Mason J (1987) In: Mason J (ed) Multinuclear NMR. Plenum Press, New York

  43. Sun G, Kertesz M (2000) J Phys Chem A 104:7398–7403

    Article  CAS  Google Scholar 

  44. Mirzaei M, Mirzaei M (2011) Solid State Sci 13:244–250

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser L. Hadipour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saeedi, M., Anafcheh, M., Ghafouri, R. et al. A computational investigation of the electronic properties of Octahedral Al n N n and Al n P n cages (n = 12, 16, 28, 36, and 48). Struct Chem 24, 681–689 (2013). https://doi.org/10.1007/s11224-012-0119-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0119-7

Keywords

Navigation