Skip to main content
Log in

Structural properties and quantum information measures of H, Li and Na atoms endohedrally captured in C\(_{36}\) and C\(_{60}\) cages

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Ritz variational principle has been utilized to study the structural properties of the valence electron of the endohedrally captured H, Li and Na atom in fullerene C\(_{36}\) and C\(_{60}\) cages. The cage environment is incorporated by considering a spherical shell model potential. On the other hand, the interaction between the core and the valence electron corresponding to Li and Na atom has been mimicked by another model potential. The effect of the fullerene C\(_{36}\) and C\(_{60}\) cages on the total energy eigenvalue and different energy components contributing to the total energy (e.g. kinetic energy, Coulombic part of the potential energy, total cage potential etc.) has been studied for all H, Li and Na atoms. The position space as well as momentum space geometrical properties, variance, and Pearson correlation coefficient are also included in the present work. We have estimated the one-electron radial charge density in both position and momentum space which are clearly depicting the effect of the cage on the valence electron of H, Li and Na atom. Further, we have shown the effect of the fullerene cages on both position and momentum space Shannon, Fisher and disequilibrium entropies corresponding to all the above-mentioned atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary information files).

References

  1. K. Sen, Electronic Structure of Quantum Confined Atoms and Molecules (Springer, Cham, 2014). https://doi.org/10.1007/978-3-319-09982-8

  2. V. Aquilanti, C. Montgomery, H.E. ans Ramachandran, N. Sathyamurthy, Eur. Phys. J. D 75, 187 (2021). https://doi.org/10.1140/epjd/s10053-021-00197-2

    Article  ADS  Google Scholar 

  3. E. Ley Koo, Revista Mexicana de Física 64, 326–363 (2018). https://doi.org/10.31349/RevMexFis.64.326

    Article  MathSciNet  Google Scholar 

  4. J.K. Saha, S. Bhattacharyya, T.K. Mukherjee, Phys. Plasmas 23, 092704 (2016). https://doi.org/10.1063/1.4962508

    Article  ADS  Google Scholar 

  5. W. Jaskólski, Phys. Rep. 271, 1 (1996)

    Article  ADS  Google Scholar 

  6. D.J. Norris, A.L. Efros, S.C. Erwin, Science 319, 1776 (2008). https://doi.org/10.1126/science.1143802

    Article  ADS  Google Scholar 

  7. A.P. Alivisatos, Science 271, 933 (1996). https://doi.org/10.1126/science.271.5251.933

    Article  ADS  Google Scholar 

  8. N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi, Science 300, 1127 (2003). https://doi.org/10.1126/science.1083440

    Article  ADS  Google Scholar 

  9. J. Sabin, E. Brandas, S.C. editors, The Theory of Confined Quantum Systems Parts I and II, Vol. 57, Advances in Quantum Chemistry (Academic Press, 2009)

  10. L. Türker, Int. J. Hydrog. Energy 32, 1933 (2007). https://doi.org/10.1016/j.ijhydene.2006.10.043

    Article  Google Scholar 

  11. C. Laughlin, S.-I. Chu, J. Phys. A Math. Theor. 42, 265004 (2009). https://doi.org/10.1088/1751-8113/42/26/265004

    Article  ADS  Google Scholar 

  12. S. Bhattacharyya, J.K. Saha, P.K. Mukherjee, T.K. Mukherjee, Phys. Scr. 87, 065305 (2013). https://doi.org/10.1088/0031-8949/87/06/065305

    Article  ADS  Google Scholar 

  13. R. Chandra, B. Dutta, J.K. Saha, S. Bhattacharyya, T.K. Mukherjee, Int. Quantum Chem. 118, e25597 (2018). https://doi.org/10.1002/qua.25597

    Article  Google Scholar 

  14. M.N. Guimarães, F.V. Prudente, J. Phys. B At. Mol. Opt. Phys. 38, 2811 (2005). https://doi.org/10.1088/0953-4075/38/15/017

    Article  ADS  Google Scholar 

  15. S. Dutta, J. Saha, S. Bhattacharyya, T. Mukherjee, Asian J. Phys. 25, 1339 (2016)

    Google Scholar 

  16. S. Mondal, K. Sen, J.K. Saha, Phys. Rev. A 105, 032821 (2022). https://doi.org/10.1103/PhysRevA.105.032821

    Article  ADS  Google Scholar 

  17. P.C. Deshmukh, J. Jose, H.R. Varma, S.T. Manson, Eur. Phys. J. D 75, 166 (2021). https://doi.org/10.1140/epjd/s10053-021-00151-2

    Article  ADS  Google Scholar 

  18. O.V. Pupysheva, A.A. Farajian, B.I. Yakobson, Nano Lett. 8, 767 (2008). https://doi.org/10.1021/nl071436g

    Article  ADS  Google Scholar 

  19. W. Harneit, C. Boehme, S. Schaefer, K. Huebener, K. Fostiropoulos, K. Lips, Phys. Rev. Lett. 98, 216601 (2007). https://doi.org/10.1103/PhysRevLett.98.216601

    Article  ADS  Google Scholar 

  20. C. Ju, D. Suter, J. Du, Phys. Rev. A 75, 012318 (2007). https://doi.org/10.1103/PhysRevA.75.012318

    Article  ADS  Google Scholar 

  21. J.B. Melanko, M.E. Pearce, A.K. Salem, Nanotubes, nanorods, nanofibers, and fullerenes for nanoscale drug delivery, in Nanotechnology in Drug Delivery, edited by M.M. de Villiers, P. Aramwit, G.S. Kwon (Springer, New York, 2009), pp. 105–127. https://doi.org/10.1007/978-0-387-77668-2_4

  22. R.H. Zadik, Y. Takabayashi, G. Klupp, R.H. Colman, A.Y. Ganin, A. Potočnik, P. Jeglič, D. Arčon, P. Matus, K. Kamarás, Y. Kasahara, Y. Iwasa, A.N. Fitch, Y. Ohishi, G. Garbarino, K. Kato, M.J. Rosseinsky, K. Prassides, Sci. Adv. 1, e1500059 (2015). https://doi.org/10.1126/sciadv.1500059

    Article  Google Scholar 

  23. H. Imahori, S. Fukuzumi, Adv. Funct. Mater. 14, 525 (2004). https://doi.org/10.1002/adfm.200305172

    Article  Google Scholar 

  24. A. Cortés-Santiago, R. Vargas, J. Garza, J. Mex. Chem. Soc. 56, 270 (2012)

    Google Scholar 

  25. T. Debnath, J.K. Saha, T. Banu, T. Ash, A.K. Das, Theor. Chem. Acc. 135, 167 (2016). https://doi.org/10.1007/s00214-016-1919-4

    Article  Google Scholar 

  26. T. Debnath, T. Ash, J.K. Saha, A.K. Das, Chem. Sel. 2, 4039 (2017). https://doi.org/10.1002/slct.201700307

    Article  Google Scholar 

  27. J.P. Connerade, V.K. Dolmatov, P.A. Lakshmi, S.T. Manson, J. Phys. B At. Mol. Opt. Phys. 32, L239 (1999). https://doi.org/10.1088/0953-4075/32/10/101

    Article  ADS  Google Scholar 

  28. E.M. Nascimento, F.V. Prudente, M.N. Guimarães, A.M. Maniero, J. Phys. B At. Mol. Opt. Phys.D 44, 015003 (2010). https://doi.org/10.1088/0953-4075/44/1/015003

    Article  ADS  Google Scholar 

  29. O. Motapon, S.A. Ndengue, K.D. Sen, Int. J. Quantum Chem. 111, 4425 (2011). https://doi.org/10.1002/qua.22996

    Article  Google Scholar 

  30. C.Y. Lin, Y.K. Ho, J. Phys. B At. Mol. Opt. Phys. 45, 145001 (2012). https://doi.org/10.1088/0953-4075/45/14/145001

    Article  ADS  Google Scholar 

  31. V.K. Dolmatov, J.L. King, J.C. Oglesby, J. Phys. B At. Mol. Opt. Phys. 45, 105102 (2012). https://doi.org/10.1088/0953-4075/45/10/105102

    Article  ADS  Google Scholar 

  32. C.Y. Lin, Y.K. Ho, Few-Body Syst. 54, 425 (2013). https://doi.org/10.1007/s00601-012-0405-3

    Article  ADS  Google Scholar 

  33. L. Wu, S. Zhang, B. Li, Phys. Lett. A 384, 126033 (2020). https://doi.org/10.1016/j.physleta.2019.126033

    Article  Google Scholar 

  34. K.A. Dubey, K. Srikanth, T.R. Rao, J. Jose, J. Phys. Commun. 4, 075016 (2020). https://doi.org/10.1088/2399-6528/aba476

    Article  Google Scholar 

  35. S. Saha, J. Jose, Int. J. Quantum Chem. 120, e26374 (2020). https://doi.org/10.1002/qua.26374

    Article  Google Scholar 

  36. D.M. Mitnik, J. Randazzo, G. Gasaneo, Phys. Rev. A 78, 062501 (2008). https://doi.org/10.1103/PhysRevA.78.062501

    Article  ADS  Google Scholar 

  37. S.H. Patil, K.D. Sen, Y.P. Varshni, Can. J. Phys. 83, 919 (2005). https://doi.org/10.1139/p05-023

    Article  ADS  Google Scholar 

  38. A.V. Korol, A.V. Solov’yov, J. Phys. B At. Mol. Opt. Phys. 43, 201004 (2010). https://doi.org/10.1088/0953-4075/43/20/201004

    Article  ADS  Google Scholar 

  39. C.E. Shannon, Bell Syst. Tech. J. 27, 379 (1948a). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

    Article  Google Scholar 

  40. R. González-Férez, J.S. Dehesa, Eur. Phys. J. D 32, 39 (2005). https://doi.org/10.1140/epjd/e2004-00182-3

    Article  ADS  Google Scholar 

  41. R. López-Ruiz, H. Mancini, X. Calbet, Phys. Lett. A 209, 321 (1995). https://doi.org/10.1016/0375-9601(95)00867-5

    Article  ADS  Google Scholar 

  42. C. Aslangul, R. Constanciel, R. Daudel, P. Kottis, Aspects of the localizability of electrons in atoms and molecules: loge theory and related methods, edited by P.-O. Löwdin, Advances in Quantum Chemistry, Vol. 6 (Academic Press, 1972), pp. 93–141. https://doi.org/10.1016/S0065-3276(08)60542-0

  43. A. Nagy, Chem. Phys. Lett. 556, 355 (2013). https://doi.org/10.1016/j.cplett.2012.11.065

    Article  ADS  Google Scholar 

  44. A.S. Hyman, S.I. Yaniger, J.F. Liebman, Int. J. Quantum Chem. 14, 757 (1978). https://doi.org/10.1002/qua.560140608

    Article  Google Scholar 

  45. M.J. Puska, R.M. Nieminen, Phys. Rev. A 47, 1181 (1993). https://doi.org/10.1103/PhysRevA.47.1181

    Article  ADS  Google Scholar 

  46. M. Amusia, A. Baltenkov, B. Krakov, Phys. Lett. A 243, 99 (1998). https://doi.org/10.1016/S0375-9601(98)00158-3

    Article  ADS  Google Scholar 

  47. A.V. Verkhovtsev, R.G. Polozkov, V.K. Ivanov, A.V. Korol, A.V. Solov’yov, J. Phys. B At. Mol. Opt. Phys. 45, 215101 (2012). https://doi.org/10.1088/0953-4075/45/21/215101

    Article  ADS  Google Scholar 

  48. S. Sahoo, Y.K. Ho, Phys. Plasmas 13, 063301 (2006). https://doi.org/10.1063/1.2200290

    Article  ADS  Google Scholar 

  49. A. Hibbert (Academic Press, 1982), pp. 309–340

  50. C. Laughlin, G. Victor, (Academic Press, 1989), pp. 163–194

  51. M. Marinescu, H.R. Sadeghpour, A. Dalgarno, Phys. Rev. A 49, 982 (1994). https://doi.org/10.1103/PhysRevA.49.982

    Article  ADS  Google Scholar 

  52. W. Schweizer, P. Faßbinder, R. González-Fèrez, At. Data Nucl. Data Tables 72, 33 (1999). https://doi.org/10.1006/adnd.1999.0808

    Article  ADS  Google Scholar 

  53. S. Sahoo, Y.K. Ho, J. Phys. B At. Mol. Opt. Phy. 33, 5151 (2000). https://doi.org/10.1088/0953-4075/33/22/316

    Article  ADS  Google Scholar 

  54. S. Sahoo, Y.K. Ho, Chin. J. Phys. 43, 66 (2005)

    Google Scholar 

  55. Y.B. Xu, M.Q. Tan, U. Becker, Phys. Rev. Lett. 76, 3538 (1996). https://doi.org/10.1103/PhysRevLett.76.3538

    Article  ADS  Google Scholar 

  56. V. Dolmatov, A. Baltenkov, J.-P. Connerade, S. Manson, Radiation Physics and Chemistry 70, 417 (2004). https://doi.org/10.1016/j.radphyschem.2003.12.024

  57. A.N. Grum-Grzhimailo, E.V. Gryzlova, S.I. Strakhova, J. Phys. B At. Mol. Opt. Phys. 44, 235005 (2011). https://doi.org/10.1088/0953-4075/44/23/235005

    Article  ADS  Google Scholar 

  58. C.E. Shannon, Bell Syst. Tech. J. 27, 379 (1948b). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

    Article  Google Scholar 

  59. R.A. Fisher, Breakthroughs in Statistics: Methodology and Distribution (Springer, New York, 1992), pp. 66–70. https://doi.org/10.1007/978-1-4612-4380-9_6

  60. S. Nordebo, M. Gustafsson, B. Nilsson, Inverse Probl. 23, 859 (2007). https://doi.org/10.1088/0266-5611/23/3/001

    Article  ADS  Google Scholar 

  61. I. Bialynicki-Birula, Ł. Rudnicki, Entropic uncertainty relations in quantum physics, in Statistical Complexity: Applications in Electronic Structure, edited by K. Sen (Springer, Dordrecht, 2011), pp. 1–34. https://doi.org/10.1007/978-90-481-3890-6_1

  62. I. Białynicki-Birula, J. Mycielski, Commun. Math. Phys. 44, 129 (1975). https://doi.org/10.1007/BF01608825

    Article  ADS  Google Scholar 

  63. S. Chowdhury, N. Mukherjee, A.K. Roy, Quantum Rep. 5, 459 (2023). https://doi.org/10.3390/quantum5020030

    Article  Google Scholar 

Download references

Acknowledgements

Anjan Sadhukhan acknowledges the partial financial support from National Science and Technology Council (NSTC), Taiwan under Grant Number NSTC 111-2811-M-A49-558. Jayanta K. Saha acknowledges partial financial support from DHESTBT, Govt. of West Bengal, India under Grant Number 249 (Sanc.)/ST/P/S &T/16G-26/2017 and Science and Engineering Research Board (SERB), Govt. of India under file number CRG/2022/003547. KDS thanks INSA, New Delhi, for the award of a senior scientist fellowship. SM is grateful for the financial help from UGC-CSIR, Govt. of India under File Number 16-6 (DEC. 2017)/2018 (NET/CSIR). The authors are thankful to anonymous reviewer for making useful suggestions which led to substantial improvement in the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta K. Saha.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S., Sadhukhan, A., Sen, K. et al. Structural properties and quantum information measures of H, Li and Na atoms endohedrally captured in C\(_{36}\) and C\(_{60}\) cages. Eur. Phys. J. Plus 138, 576 (2023). https://doi.org/10.1140/epjp/s13360-023-04188-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04188-7

Navigation