Skip to main content
Log in

Substituent effects on the compounds CX1X2•− (X1, X2 = H, F, Cl, Br, I) from theoretical investigation

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The electronic and molecular structures of mono- and dihalocarbene anions constructed by model CX1X2•− (X1, X2 = H, F, Cl, Br, I), as well as the corresponding carbenes CX1X2 and analogous silicon-anions SiX1X2•−, have been studied in detail using the B3LYP, MP2, and QCISD(T) levels of theory. Our calculated findings suggest that stabilization of the compounds is associated with the size of the halogen substituent X, which is further confirmed by ionization energies, the spin density (S d), and the second-order perturbative energies (E(2)). Besides, we have also explored the source of the anions’ proton affinity difference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Murray KK, Leopold DG, Miller TM, Lineberger WC (1988) J Chem Phys 89:5442

    Article  CAS  Google Scholar 

  2. Gilles MK, Ervin KM, Ho J, Lineberger WC (1992) J Phys Chem 96:1130

    Article  CAS  Google Scholar 

  3. Schwartz RL, Davico GE, Ramond TM, Lineberger WC (1999) J Phys Chem A 103:8213

    Article  CAS  Google Scholar 

  4. Kirmse W (1971) Carbene chemistry. Academic Press, New York

    Google Scholar 

  5. Jones M, Moss RA (1973) Carbenes. Wiley, New York

    Google Scholar 

  6. Ferguson EE, Fehsenfeld FC, Albritton DL (1979) Gas-phase ion chemistry. Academic Press, New York

    Google Scholar 

  7. Jennings KR (1979) Gas-phase ion chemistry. Academic Press, New York

    Google Scholar 

  8. Harrison AG (1983) Chemical ionization mass spectrometry. CRC Press, Boca Raton

    Google Scholar 

  9. Grimsrud EP (1981) Electron capture. Elsevier, New York

    Google Scholar 

  10. Lias SG, Karpas Z, Liebman JF (1985) J Am Chem Soc 107:6089

    Article  CAS  Google Scholar 

  11. Born M, Ingemann S, Nibbering NMM (1994) J Am Chem Soc 116:7210

    Article  CAS  Google Scholar 

  12. Born M, Ingemann S, Nibbering NMM (2000) Int J Mass Spectrom 194:103

    Article  CAS  Google Scholar 

  13. Poutsma JC, Paulino JA, Squires RR (1997) J Phys Chem A 101:5327

    Article  CAS  Google Scholar 

  14. Grabowski JJ, Melly SJ (1987) Int J Mass Spectrom Ion Process 81:147

    Article  CAS  Google Scholar 

  15. Lee J, Grabowski JJ (1992) Chem Rev 92:1611

    Article  CAS  Google Scholar 

  16. Staneke PO, Kauw J, Born M, Ingemann S, Nibbering NMM (1997) Rapid Commun Mass Spectrom 11:124

    Article  CAS  Google Scholar 

  17. Kebarle P, Chowdhury S (1987) Chem Rev 87:513

    Article  CAS  Google Scholar 

  18. McDonald RN, Chowdhury AK (1983) J Am Chem Soc 105:7267

    Article  CAS  Google Scholar 

  19. Van Doren JM, Barlow SE, DePuy CH, Bierbaum VM (1987) Int J Mass Spectrom Ion Process 81:85

    Article  Google Scholar 

  20. Mckee ML (1997) J Org Chem 62:7942

    Article  CAS  Google Scholar 

  21. Born M, Ingemann S, Nibbering NMM (1996) J Chem Soc Perkin Trans 2:2537

    Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision E.01. Gaussian Inc., Wallingford, CT

  23. Gracia L, Sambrano JR, Safont VS, Calatayud M, Beltrán A, Andrés J (2003) J Phys Chem A 107:3107

    Article  CAS  Google Scholar 

  24. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  25. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  26. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275

    Article  CAS  Google Scholar 

  27. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:281

    Article  CAS  Google Scholar 

  28. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968

    Article  CAS  Google Scholar 

  29. Takahashi M, Tsutsui S, Sakamoto K, Kira M, Muller T, Apeloig Y (2001) J Am Chem Soc 123:347

    Article  CAS  Google Scholar 

  30. Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123

    Article  CAS  Google Scholar 

  31. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  32. Adhikari U, Scheiner S (2012) J Phys Chem A 116:3487

    Article  CAS  Google Scholar 

  33. Zittel PF, Ellison GB, ONeil SV, Herbst E, Lineberger WC, Reinhardt WP (1976) J Am Chem Soc 98:3731

    Google Scholar 

  34. Justyna J-W (2010) J Mol Struct 952:74

    Article  Google Scholar 

  35. Su M-D, Chu S-Y (1999) J Am Chem Soc 121:4229

    Article  CAS  Google Scholar 

  36. Allred AL (1961) J Inorg Nucl Chem 17:215

    Article  CAS  Google Scholar 

  37. Villano SM, Eyet N, Lineberger WC, Bierbaum VM (2009) Int J Mass Spectrom 280:12

    Article  CAS  Google Scholar 

  38. Liang J-X, Geng Z-Y, Wang Y-C (2012) J Comput Chem 33:595

    Article  CAS  Google Scholar 

  39. Yadav P, Mohan H, Maity DK, Suresh CH, Rao BSM (2008) Chem Phys 351:57

    Article  CAS  Google Scholar 

  40. Wiberg KB, Murcko MA (1987) J Phys Chem 91:3616

    Article  CAS  Google Scholar 

  41. Wang Y-C, Li H-Z, Geng Z-Y, Zhang Q-L, Si Y-B, Wang Q-Y (2009) Chem Phys 363:1

    Article  CAS  Google Scholar 

  42. Scheiner S (2011) J Phys Chem A 115:11202

    Article  CAS  Google Scholar 

  43. Mallard WG (2009) NIST chemistry web book. NIST standard reference database number 69. http://webbook.nist.gov/chemistry. Accessed 22 Jan 2009

  44. Ervin KE, Lineberger CW (2005) J Chem Phys 122:194303

    Article  Google Scholar 

  45. Liang J-X, Geng Z-Y, Wang Y-C (2010) J Mol Struct 958:15

    Article  CAS  Google Scholar 

  46. Liang J-X, Geng Z-Y, Wang Y-C (2011) Int J Quantum Chem 111:3048

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Scientific and Technical Project Supported by Gansu Province (090GKCA027), the Scientific and Technical Project of Lanzhou City (2009-1-167), the Person with Ability Introduce and Scientific Research Item of Northwest University for Nationalities, and the Fundamental Research Funds for the Central Universities (zyz2011059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, J., Wang, Y., Geng, Z. et al. Substituent effects on the compounds CX1X2•− (X1, X2 = H, F, Cl, Br, I) from theoretical investigation. Struct Chem 24, 455–461 (2013). https://doi.org/10.1007/s11224-012-0095-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0095-y

Keywords

Navigation