Skip to main content

Advertisement

Log in

Theoretical investigations on the structure, density, thermodynamic and performance properties of amino-, methyl-, and nitroimidazoles and their N-oxides

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Density functional theory calculations at the B3LYP/aug-cc-pVDZ level have been performed to explore the structure, stability, heat of explosion, density, and the performance properties of amino-, methyl-, and nitroimidazoles. N-Nitroimidazoles have shown lower densities compared with those of C-nitroimidazoles. Detonation properties of title compounds were evaluated by using Kamlet–Jacob semi-empirical equations based on the predicted densities and the calculated heats of detonation. It has been found that some compounds with the calculated densities 2.0 g/cm3, detonation velocities over 9.10 km/s and detonation pressures of about 45 GPa (some even over 50 GPa) may be novel potential high energy materials. The higher performance of nitroimidazole-N-oxides is apparently due to their higher densities (2.0–2.515 g/cm3). Heat of explosion, stability, density, and performance properties are related to the number and relative positions of –NO2, –NH2, and –CH3 groups of the imidazole ring. The designed nitroimidazoles satisfy the criteria of high energy materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pagoria PF, Lee JS, Mitchell AR, Schmidt RD (2002) Thermochim Acta 384:187–204

    Article  CAS  Google Scholar 

  2. Klapötke TM (2011) Chemistry of high-energy materials. Walter de Gruyter, Berlin

    Google Scholar 

  3. Gao H, Shreeve JM (2011) Chem Rev 111:6513–6556

    Article  Google Scholar 

  4. Dave PR, Duddu R, Yang K, Damavarpu R, Gelber N, Surapaneni R, Gilardi R (2004) Tetrahedron Lett 45:2159–2162

    Article  CAS  Google Scholar 

  5. Duddu R, Dave PR, Damavarapu R, Surapaneni R, Gilardi R (2005) Synth Commun 35:2709–2714

    Article  CAS  Google Scholar 

  6. Damavarapu R, Surapaneni R, Duddu R, Farohor F, Dave PR, Parrish D (2007) J Heterocycl Chem 44:241

    Article  CAS  Google Scholar 

  7. Duddu R, Dave PR, Damavarapu R, Surapaneni R, Gilardi R, Parrish D (2008) Synth Commun 38:767–774

    Article  CAS  Google Scholar 

  8. Duddu R, Dave PR, Damavarapu R, Surapaneni R, Parrish D (2009) Synth Commun 39:4282–4288

    Article  CAS  Google Scholar 

  9. Duddu R, Dave PR, Damavarapu R, Gelber N, Parrish D (2010) Tetrahedron Lett 51:339–401

    Article  Google Scholar 

  10. Raja D, Zhang M-X, Damavarapu R, Gelberb N (2011) Synthesis 17:2859–2864

    Google Scholar 

  11. Cho JR, Kim KJ, Cho SG, Kim JK (2002) J Heterocycl Chem 3:141–144

    Article  Google Scholar 

  12. Katritzky AR, Cundy DJ, Chen J (1993) J Energ Mater 11:345–352

    Article  CAS  Google Scholar 

  13. Gao H, Ye C, Gupta OD, Xiao JC, Hiskey MA, Twamley B, Shreeve JM (2007) Chem Eur J 13:3853–3860

    Article  CAS  Google Scholar 

  14. Grimmett MR, Hua S, Chang R, Foley S, Simpson J (1989) Aust J Chem 42:1281–1289

    Article  CAS  Google Scholar 

  15. Bracuti AJ (1995) J Chem Crystallogr 25:625–627

    Article  CAS  Google Scholar 

  16. Pinkerton AA, Zhuorva EA, Chen Y-S (2003) In: Politzer P, Murray JS (eds) Energetic materials, theoretical and computational chemistry series. Elsevier, New York

    Google Scholar 

  17. Larina L, Lopyrev V (2009) Nitroazoles. Synthesis, structure and application. Springer, Berlin

    Book  Google Scholar 

  18. Ravi P, Badgujar DM, Gore GM, Tewari SP, Sikder AK (2011) Prop Explos Pyrotech 36:393–403

    Article  CAS  Google Scholar 

  19. Ravi P, Gore GM, Tewari SP, Sikder AK (2012) J Mol Model 18:597–605

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.04. Gaussian, Inc., Pittsburgh, PA

    Google Scholar 

  21. Turker L, Avalar T, Gumus S, Namur Y (2009) J Hazard Mater 167:440–448

    Article  Google Scholar 

  22. Turker L, Avalar T (2009) J Hazard Mater 162:193–203

    Article  CAS  Google Scholar 

  23. Ravi P, Gore GM, Tewari SP, Sikder AK (2010) J Hazard Mater 183:859–865

    Article  CAS  Google Scholar 

  24. Njegic B, Gordon MS (2006) J Chem Phys 125:224102–224112

    Article  Google Scholar 

  25. Materials Studio 4.1 (2004) Accelrys Inc., San Diego, CA

  26. Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23–25

    Article  CAS  Google Scholar 

  27. Akhavan J (1998) Chemistry of explosives. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  28. Zhang C, Shu Y, Huang Y, Zhao X, Dong H (2005) J Phys Chem B 109:8978–8982

    Article  CAS  Google Scholar 

  29. Zhang C (2009) J Hazard Mater 161:21–28

    Article  CAS  Google Scholar 

  30. Zhang C, Shu Y, Wang X, Zhao X, Tan B, Peng R (2005) J Phys Chem A 109:6592–6596

    Article  CAS  Google Scholar 

  31. Zhi C, Cheng X (2010) Prop Explos Pyretech 35:555–560

    Article  CAS  Google Scholar 

  32. Fukui F, Yonezawa T, Shingu H (1952) J Chem Phys 20:722–725

    Article  CAS  Google Scholar 

  33. Zhou Z, Parr RG (1990) J Am Chem Soc 112:5720–5724

    Article  CAS  Google Scholar 

  34. Pearson RG (1989) J Org Chem 54:1423–1440

    Article  CAS  Google Scholar 

  35. Goh EM, Cho SG, Park BS (2000) J Def Tech Res 6:91–96

    Google Scholar 

  36. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbe A (2009) Mol Phys 107:2095–2101

    Article  CAS  Google Scholar 

  37. Kim CK, Cho SG, Kim CK, Park H-Y, Zhang H, Lee HW (2008) J Comput Chem 29:1818–1824

    Article  CAS  Google Scholar 

  38. Belsky VK, Zorkii PM (1977) Acta Crystallogr Sect A 13:1004–1006

    Article  Google Scholar 

  39. Craven BM, Mcmullen RK, Bell JD, Freeman HC (1977) Acta Crystallogr Sect B 33:2585–2589

    Article  Google Scholar 

  40. Eaton PE, Gilardi R, Zhang M-X (2000) Adv Mater 12:1143–1148

    Article  CAS  Google Scholar 

  41. Hoffman DM (2003) Prop Explos Pyrotech 28:194–200

    Article  CAS  Google Scholar 

  42. Mader CL (1998) Numerical modeling of explosives and propellants, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  43. Politzer P, Murray JS (2011) Central Eur J Energ Mater 8(3):209–220

    CAS  Google Scholar 

  44. Depluech A, Cherville J (1978) Prop Explos Pyrotech 3:169–175

    Article  Google Scholar 

  45. Depluech A, Cherville J (1979) Prop Explos Pyrotech 4:121–129

    Article  Google Scholar 

  46. Xiao HM (1994) Molecular orbital theory of nitro compounds. Publishing House of Defense Industry, Peking

    Google Scholar 

  47. Kamlet MJ, Adolph HG (1979) Prop Explos Pyrotech 4:30–34

    Article  CAS  Google Scholar 

  48. Mullay J (1987) Prop Explos Pyrotech 12:60–63

    Article  CAS  Google Scholar 

  49. Politzer P, Murray JS (1995) Mol Phys 86:251–255

    Article  CAS  Google Scholar 

  50. Murray JS, Concha MC, Politzer P (2009) Mol Phys 107:89–97

    Article  CAS  Google Scholar 

  51. Rice BM, Hare JJ (2002) J Phys Chem A 106:1770–1780

    Article  CAS  Google Scholar 

  52. Brinck T, Murray JS, Politzer P (1992) Mol Phys 76:609–617

    Article  CAS  Google Scholar 

  53. Murray JS, Lane P, Politzer P (1995) Mol Phys 85:1–8

    Article  CAS  Google Scholar 

  54. Murray JS, Lane P, Politzer P (1998) Mol Phys 93:187–194

    Article  CAS  Google Scholar 

  55. Pospìŝil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) J Mol Model 16:895–901

    Article  Google Scholar 

  56. Zeman S (1999) J Energ Mater 17:305–330

    Article  CAS  Google Scholar 

  57. Zeman S (2006) J Hazard Mater 132:155–164

    Article  CAS  Google Scholar 

  58. Skimmer D, Olson D, Block-Bolton A (1997) Prop Explos Pyrotech 23:34–42

    Google Scholar 

  59. Wang G, Xiao H, Ju X, Gong X (2006) Prop Explos Pyrotech 31:102–109

    Article  CAS  Google Scholar 

  60. Wang G, Xiao H, Ju X, Gong X (2006) Prop Explos Pyrotech 31:361–368

    Article  CAS  Google Scholar 

  61. Hess BA, Schaad LJ (1971) J Am Chem Soc 93:2413–2416

    Article  CAS  Google Scholar 

  62. Zhou Z, Parr RG, Garst JF (1988) Tetrahedron Lett 29:4843–4846

    Article  CAS  Google Scholar 

  63. Zhou Z, Parr RG (1989) J Am Chem Soc 111:7371–7379

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the referees for enlightening comments and useful suggestions. We thank Defense Research Development Organization, India for the financial assistance through Advanced Centre of Research in High Energy Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ravi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravi, P., Tewari, S.P. Theoretical investigations on the structure, density, thermodynamic and performance properties of amino-, methyl-, and nitroimidazoles and their N-oxides. Struct Chem 23, 1953–1970 (2012). https://doi.org/10.1007/s11224-012-0028-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0028-9

Keywords

Navigation