Skip to main content
Log in

Binding of anticancer drug Ru(η6-C6H5(CH2)2OH)Cl2(DAPTA) to DNA purine bases and amino acid residues: a theoretical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The hydrolyzed Ru(η6-C6H5(CH2)2OH)Cl2(DAPTA) (DAPTA = 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane) binding to guanine(G), adenine (A), cytosine(C), cysteine (Cys), and histidine (His) residues were explored using the B3LYP hybrid functional and IEF-PCM solvation models. The computed activation barriers for the reactions of diaqua complex were lower than those of chloroaqua complex except for binding to cytosine. For the chloroaqua complex, the activation free energy was lowest when binding to cytosine (10.5 kcal/mol). Whereas, the substitution reaction of diaqua complex binding to cysteine showed the lowest activation free energy with 10.1 kcal/mol, closely followed by histidine (15.8 kcal/mol), adenine (20.1 kcal/mol), cytosine (20.7 kcal/mol), and guanine (24.4 kcal/mol) by turns. It could be deduced that the completely hydrolyzed Ru(η6-C6H5(CH2)2OH)Cl2(DAPTA) compounds might preferentially bind to amino acids residues in vivo. In addition, to simulate the protein and DNA environment in vivo, a detailed investigation of the activation free energies for the substitution reactions in dependence of the dielectric constant ε (4, 24, and 78.39) was systematically performed as well. The calculated results demonstrated that the environmental effect had a little impact on these substitution reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gossens C, Tavernelli I, Rothlisberger U (2009) J Phys Chem A 113:11888

    Article  CAS  Google Scholar 

  2. Rosenberg B, Vancamp L, Trosko JE, Mansour VH (1969) Nature 222:385

    Article  CAS  Google Scholar 

  3. Renfrew AK, Phillips AD, Egger AE, Hartinger CG, Bosquain SS, Nazarov AA, Keppler BK, Gonsalvi L, Peruzzini M, Dyson PJ (2009) Organometallics 28:1165

    Article  CAS  Google Scholar 

  4. Chu G (1994) J Biol Chem 269:787

    CAS  Google Scholar 

  5. Zhou L (2009) J Phys Chem B 113:2110

    Article  CAS  Google Scholar 

  6. Walker JM, McEwan A, Pycko R, Tassotto ML, Gottardo C, Th’ng J, Wang R, Spivak GJ (2009) Eur J Inorg Chem 2009:4629

    Article  Google Scholar 

  7. Kung A, Strickmann DB, Galanski M, Keppler BK (2001) J Inorg Biochem 86:691

    Article  CAS  Google Scholar 

  8. Morris RE, Aird RE, del Socorro Murdoch P, Chen H, Cummings J, Hughes ND, Parsons S, Parkin A, Boyd G, Jodrell DI, Sadler PJ (2001) J Med Chem 44:3616

    Article  CAS  Google Scholar 

  9. Hotze ACG, Kariuki BM, Hannon MJ (2006) Angew Chem Int Ed 45:4839

    Article  Google Scholar 

  10. Kljun J, Bytzek AK, Kandioller W, Bartel C, Jakupec MA, Hartinger CG, Keppler BK, Turel I (2011) Organometallics 30:2506

    Article  CAS  Google Scholar 

  11. Aird RE, Cummings J, Ritchie AA, Muir M, Morris RE, Chen H, Sadler PJ, Jodrell DI (2002) Br J Cancer 86:1652

    Article  CAS  Google Scholar 

  12. Depenbrock H, Schmelcher S, Peter R, Keppler BK, Weirich G, Block T, Rastetter J, Hanauske AR (1997) Eur J Cancer 33:2404

    Article  CAS  Google Scholar 

  13. Velders AH, Kooijman H, Spek AL, Haasnoot JG, de Vos D, Reedijk J (2000) Inorg Chem 39:2966

    Article  CAS  Google Scholar 

  14. Alessio E, Mestroni G, Nardin G, Attia WM, Calligaris M, Sava G, Zorzet S (1988) Inorg Chem 27:4099

    Article  CAS  Google Scholar 

  15. Hotze ACG, Caspers SE, de Vos D, Kooijman H, Spek AL, Flamigni A, Bacac M, Sava G, Haasnoot JG, Reedijk J (2004) J Biol Inorg Chem 9:354

    Article  CAS  Google Scholar 

  16. Gossens C, Tavernelli I, Rothlisberger U (2007) J Chem Theory Comput 3:1212

    Article  CAS  Google Scholar 

  17. Scolaro C, Geldbach TJ, Rochat S, Dorcier A, Gossens C, Bergamo A, Cocchietto M, Tavernelli I, Sava G, Rothlisberger U, Dyson PJ (2006) Organometallics 25:756

    Article  CAS  Google Scholar 

  18. Smith CA, Sutherland-Smith AJ, Keppler BK, Kratz F, Baker EN (1996) J Biol Inorg Chem 1:424

    Article  CAS  Google Scholar 

  19. Ang WH, Daldini E, Scolaro C, Scopelliti R, Juillerat-Jeannerat L, Dyson PJ (2006) Inorg Chem 45:9006

    Article  CAS  Google Scholar 

  20. van Rijt SH, Hebden AJ, Amaresekera T, Deeth RJ, Clarkson GJ, Parsons S, McGowan PC, Sadler PJ (2009) J Med Chem 52:7753

    Article  Google Scholar 

  21. Renfrew AK, Scopelliti R, Dyson PJ (2010) Inorg Chem 49:2239

    Article  CAS  Google Scholar 

  22. Egger A, Arion VB, Reisner E, Cebrian-Losantos B, Shova S, Trettenhahn G, Keppler BK (2005) Inorg Chem 44:122

    Article  CAS  Google Scholar 

  23. Hartinger CG, Zorbas-Seifried S, Jakupec MA, Kynast B, Zorbas H, Keppler BK (2006) J Inorg Biochem 100:891

    Article  CAS  Google Scholar 

  24. Serli B, Zangrando E, Gianferrara T, Scolaro C, Dyson PJ, Bergamo A, Alessio E (2005) Eur J Inorg Chem 2005:3423

    Article  Google Scholar 

  25. Dorcier A, Dyson PJ, Gossens C, Rothlisberger U, Scopelliti R, Tavernelli I (2005) Organometallics 24:2114

    Article  CAS  Google Scholar 

  26. Scolaro C, Hartinger CG, Allardyce CS, Keppler BK, Dyson PJ (2008) J Inorg Biochem 102:1743

    Article  CAS  Google Scholar 

  27. Gossens C, Tavernelli I, Rothlisberger U (2008) J Am Chem Soc 130:10921

    Article  CAS  Google Scholar 

  28. Egger AE, Hartinger CG, Renfrew AK, Dyson PJ (2010) J Biol Inorg Chem 15:919

    Article  CAS  Google Scholar 

  29. Hanif M, Meier SM, Kandioller W, Bytzek A, Hejl M, Hartinger CG, Nazarov AA, Arion VB, Jakupec MA, Dyson PJ, Keppler BK (2011) J Inorg Biochem 105:224

    Article  CAS  Google Scholar 

  30. Nowak-Sliwinska P, van Beijnum JR, Casini A, Nazarov AA, Wagnieres G, van den Bergh H, Dyson PJ, Griffioen AW (2011) J Med Chem 54:3895

    Article  CAS  Google Scholar 

  31. Wu B, Ong MS, Groessl M, Adhireksan Z, Hartinger CG, Dyson PJ, Davey CA (2011) Chem Eur J 17:3562

    Article  CAS  Google Scholar 

  32. Renfrew AK, Egger AE, Scopelliti R, Hartinger CG, Dyson PJ (2010) C R Chim 13:1144

    Article  CAS  Google Scholar 

  33. Jamieson ER, Lippard SJ (1999) Chem Rev 99:2467

    Article  CAS  Google Scholar 

  34. Hu W, Luo Q, Ma X, Wu K, Liu J, Chen Y, Xiong S, Wang J, Sadler PJ, Wang F (2009) Chem Eur J 15:6586

    Article  CAS  Google Scholar 

  35. Casini A, Hartinger CG, Nazarov AA, Dyson PJ (2010) Top Organomet Chem 32:57

    Article  CAS  Google Scholar 

  36. Scolaro C, Chaplin AB, Hartinger CG, Bergamo A, Cocchietto M, Keppler BK, Sava G, Dyson PJ (2007) Dalton Trans 43:5065

    Article  Google Scholar 

  37. Hillard EA, Jaouen G (2011) Organometallics 30:20

    Article  CAS  Google Scholar 

  38. Gossens C, Dorcier A, Dyson PJ, Rothlisberger U (2007) Organometallics 26:3969

    Article  CAS  Google Scholar 

  39. Bugarcic T, Habtemariam A, Deeth RJ, Fabbiani FPA, Parsons S, Sadler PJ (2009) Inorg Chem 48:9444

    Article  CAS  Google Scholar 

  40. Renfrew AK, Phillips AD, Tapavicza E, Scopelliti R, Rothlisberger U, Dyson PJ (2009) Organometallics 28:5061

    Article  CAS  Google Scholar 

  41. Dougan SJ, Melchart M, Habtemariam A, Parsons S, Sadler PJ (2006) Inorg Chem 45:10882

    Article  CAS  Google Scholar 

  42. Wang F, Chen H, Parsons S, Oswald IDH, Davidson JE, Sadler PJ (2003) Chem Eur J 9:5810

    Article  CAS  Google Scholar 

  43. Chval Z, Futera Z, Burda JV (2011) J Chem Phys 134:024520

    Article  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr TV, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) In: Gaussian 03, Revision D.01,Gaussian Inc., Wallingford, CT

  45. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  46. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  47. Hay PJ, Wadt WR (1985) J Chem Phys 82:270

    Article  CAS  Google Scholar 

  48. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  49. Wadt WR, Hay PJ (1985) J Chem Phys 82:284

    Article  CAS  Google Scholar 

  50. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  CAS  Google Scholar 

  51. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523

    Article  CAS  Google Scholar 

  52. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151

    Article  CAS  Google Scholar 

  53. Mennucci B, Cances E, Tomasi J (1997) J Phys Chem B 101:10506

    Article  CAS  Google Scholar 

  54. Tomasi J, Mennucci B, Cances E (1999) J Mol Struct (THEOCHEM) 464:211

    Article  CAS  Google Scholar 

  55. Besker N, Coletti C, Marrone A, Re N (2007) J Phys Chem B 111:9955

    Article  CAS  Google Scholar 

  56. Chen JC, Chen LM, Xu LC, Zheng KC, Ji LN (2008) J Phys Chem B 112:9966

    Article  CAS  Google Scholar 

  57. Kuduk-Jaworska J, Chojnacki H, Jański J (2011) J Mol Model 17:2411

    Google Scholar 

  58. Archontis G, Simonson T (2001) J Am Chem Soc 123:11047

    Article  CAS  Google Scholar 

  59. Monjardet-Bas V, Elizondo-Riojas MA, Chottard JC, Kozelka J (2002) Angew Chem Int Ed 41:2998

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant no. 20971056 and 21103072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 394 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Q., Zhou, L. & Li, J. Binding of anticancer drug Ru(η6-C6H5(CH2)2OH)Cl2(DAPTA) to DNA purine bases and amino acid residues: a theoretical study. Struct Chem 23, 1931–1940 (2012). https://doi.org/10.1007/s11224-012-0003-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0003-5

Keywords

Navigation