Skip to main content
Log in

Structure-dependent in vitro cytotoxicity of the isomeric complexes [Ru(L)2Cl2] (L=o-tolylazopyridine and 4-methyl-2-phenylazopyridine) in comparison to [Ru(azpy)2Cl2]

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The dichlorobis(2-phenylazopyridine)ruthenium(II) complexes, [Ru(azpy)2Cl2], are under renewed investigation due to their potential anticancer activity. The three most common isomers α-, β- and γ-[RuL2Cl2] with L=o-tolylazopyridine (tazpy) and 4-methyl-2-phenylazopyridine (mazpy) (α indicating the coordinating Cl, N(pyridine) and Nazo atoms in mutual cis, trans, cis positions, β indicating the coordinating Cl, N(pyridine) and Nazo atoms in mutual cis, cis, cis positions, and γ indicating the coordinating Cl, N(pyridine) and Nazo atoms in mutual trans, cis, cis positions) are synthesized and characterized by NMR spectroscopy. The molecular structures of γ-[Ru(tazpy)2Cl2] and α-[Ru(mazpy)2Cl2] are determined by X-ray diffraction analysis. The IC50 values of the geometrically isomeric [Ru(tazpy)2Cl2] and [Ru(mazpy)2Cl2] complexes compared with those of the parent [Ru(azpy)2Cl2] complexes are determined in a series of human tumour cell lines (MCF-7, EVSA-T, WIDR, IGROV, M19, A498 and H266). These data unambiguously show for all complexes the following trend: the α isomer shows a very high cytotoxicity, whereas the β isomer is a factor 10 less cytotoxic. The γ isomers of [Ru(tazpy)2Cl2] and [Ru(mazpy)2Cl2] display a very high cytotoxicity comparable to that of the γ isomer of the parent compound [Ru(azpy)2Cl2] and to that of the α isomer. These biological data are of the utmost importance for a better understanding of the structure–activity relationships for the isomeric [RuL2Cl2] complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In the C2, symmetric γ and α isomers of the [Ru(azpy)2Cl2] complexes, the two azpy ligands are equivalent. Therefore, it is not clear beforehand whether an NOE is an (intramolecular) inter- or intraligand NOE cross-peak. However, the NOE H6–H(o) in the α isomer of α-[Ru(azpy)2Cl2] is definitely an interligand one, for example. Obviously from the distance H6–H(o) within one azpy ligand of α-[Ru(azpy)2Cl2], as derived from the X-ray structure [35] (on average 6.31 Å), it is clear that no intraligand NOE can be expected. The interligand H6–H(o) distance, as shown in the X-ray structure, is on average 4.14 Å, predicting the interligand NOE. Moreover, in asymmetric α-isomeric azpy complexes [37], like α-[Ru(azpy)2(9-Egua)(H2O)](PF6)2 or α-[Ru(azpy)2Cl(NO3)] (unpublished data), the interligand H6–o’ and H6’–o (prime denoting the other azpy ligand) are observed and not, for example, the intraligand H6–o NOE.

Abbreviations

AAS:

atomic absorption spectroscopy

azpy:

2-phenylazopyridine

COSY:

correlation spectroscopy

mazpy:

4-methyl-2-phenylazopyridine

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide

NOESY:

nuclear Overhauser-effect spectroscopy

PBS:

phosphate-buffered saline

tazpy:

o-tolylazopyridine

References

  1. Clarke MJ, Zhu FC, Frasca DR (1999) Chem Rev 99:2511–2533

    Article  CAS  PubMed  Google Scholar 

  2. Clarke MJ (2002) Coord Chem Rev 232:69–93

    Article  CAS  Google Scholar 

  3. Reedijk J (2003) Proc Natl Acad Sci USA 100:3611–3616

    Article  CAS  PubMed  Google Scholar 

  4. Lippert B (ed) (1999) Cisplatin. chemistry and biochemistry of a leading anticancer drug. Verlag Helvetica Chimica Acta, Zurich, Wiley-VCH, Weinheim

  5. Wong E, Giandomenico CM (1999) Chem Rev 99:2451–2466

    PubMed  Google Scholar 

  6. Van Vliet PM (1996) PhD Thesis, Leiden University, The Netherlands

  7. Nováková O, Kaspárková J, Vrána O, Van Vliet PM, Reedijk J, Brabec V (1995) Biochemistry 34:12369–12378

    CAS  PubMed  Google Scholar 

  8. Velders AH, Kooijman H, Spek AL, Haasnoot JG, de Vos D, Reedijk J (2000) Inorg Chem 39:2966–2967

    Article  CAS  PubMed  Google Scholar 

  9. Goswami S, Chakravarty AR, Chakravorty A (1981) Inorg Chem 29:2246–2250

    Google Scholar 

  10. Krause RA, Krause K (1980) Inorg Chem 19:2600–2603

    CAS  Google Scholar 

  11. Velders AH, Van der Schilden K, Hotze ACG, Reedijk J, Kooijman H, Spek AL (2004) J Chem Soc Dalton Trans 448–455

  12. Popov AM, Egorova MB, Lutovinov VA, Dmitrieva RI (1990) Zh Obshch Khim 60:2169

    CAS  Google Scholar 

  13. Goswami S, Mukherjee R, Chakravorty A (1983) Inorg Chem 22:2825–2832

    CAS  Google Scholar 

  14. Goswami S, Chakravarty AR, Chakravorty A (1983) Inorg Chem 11:602–609

    Google Scholar 

  15. Bag N, Pramanik A, Lahiri GK, Chakravorty A (1992) Inorg Chem 31:40–45

    CAS  Google Scholar 

  16. Ackermann MN, Kiihne SR, Saunders PA, Barnes CE, Stallings SC, Kim HD, Woods C, Lagunoff M (2002) Inorg Chim Acta 334:193–203

    Article  CAS  Google Scholar 

  17. Ackermann MN, Naylor JW, Smith EJ, Mines GA, Amin NS, Kerns ML, Woods C (1992) Organometallics 11:1919–1926

    CAS  Google Scholar 

  18. Bao T, Krause K, Krause RA (1988) Inorg Chem 27:759–761

    CAS  Google Scholar 

  19. Sheldrick GM (1986) SHELXS86 Program for crystal structure determination. University of Göttingen, Germany

  20. Sheldrick GM (1997) SHELXL97 Program for crystal structure refinement. University of Göttingen, Germany

  21. Sheldrick GM (1996) SHELXL-97 Program for crystal structure refinement. University of Göttingen, Germany

  22. Sluis P, Spek AL (1990) Acta Crystallogr A46:194–201

    Google Scholar 

  23. Spek AL (1990) Acta Crystallogr A46: C-34

    Google Scholar 

  24. Wilson AJC (ed) (1992) International tables for crystallography, vol C. Kluwer, Dordrecht,

  25. Boyd MR (1997) In: Teicher, BA (eds) The NCI in vitro anticancer drug discovery system. Humana Press, Totowa, USA, pp 23–42

  26. Keepers YP, Pizao PE, Peters GJ, Van Ark-Otte J, Winograd B, Pinedo HM (1991) Eur J Cancer 27:897–900

    CAS  PubMed  Google Scholar 

  27. Tada H, Shiho O, Kuroshima K, Koyama M, Tsukamoto K (1986) J Immun Methods 93:156–165

    Google Scholar 

  28. Tamura H, Arai T, Nagase M, Ichinose N (1992) Bunseki Kagaku 41: T13–T18

    CAS  Google Scholar 

  29. Cocchietto M, Sava G (2000) Pharmacol Toxicol 87:193–197

    CAS  PubMed  Google Scholar 

  30. Velders AH, Hotze ACG, van Albada GA, Haasnoot JG, Reedijk J (2000) Inorg Chem 39:4073–4080

    Article  CAS  PubMed  Google Scholar 

  31. Santra PK, Misra TK, Das D, Sinha C, Slawin AMZ, Woollins JD (1999) Polyhedron 18:2869–2878

    Article  CAS  Google Scholar 

  32. Lu T-H, Misra TK, Lin P-C, Liao F-L, Chung C-S (2003) Polyhedron 22:535–541

    Article  CAS  Google Scholar 

  33. Das C, Saha A, Hung CH, Lee GH, Peng SM, Goswami S (2003) Inorg Chem 42:198–204

    Article  CAS  PubMed  Google Scholar 

  34. Misra TK, Das D, Sinha C, Ghosh P, Pal CK (1998) Inorg Chem 37:1672–1678

    Article  CAS  Google Scholar 

  35. Seal A, Ray S (1984) Acta Cryst C40:932

    Google Scholar 

  36. Hotze ACG, Bacac M, Velders AH, Jansen BAJ, Kooijman H, Spek AL, Haasnoot JG, Reedijk J (2003) J Med Chem 46:1743–1750

    Article  CAS  PubMed  Google Scholar 

  37. Hotze ACG, Velders AH, Ugozzoli F, Biagini-Cingi M, Manotti-Lanfredi AM, Haasnoot JG, Reedijk J (2000) Inorg Chem 39:3838–3844

    Article  CAS  PubMed  Google Scholar 

  38. Iwamoto M, Elessio E, Marzilli LG (1996) Inorg Chem 35:2384–2389

    Article  CAS  PubMed  Google Scholar 

  39. Velders AH (2000)PhD Thesis, Leiden University, The Netherlands

  40. Velders AH, Hotze ACG, Reedijk J J Am Chem Soc: submitted

  41. Velders AH, Quiroga AG, Haasnoot JG, Reedijk J (2003) Eur J Inorg Chem: 713–719

    Article  Google Scholar 

  42. Flack HD (1983) Acta Crystallogr Sect A A39:876

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Council for Chemical Sciences of the Netherlands Organisation for Scientific Research (CW-NWO). We thank Johnson Matthey Chemicals (Reading, UK) for a generous loan of RuCl3·3H2O. Additional support from COST Action D20, allowing regular research exchanges to partner laboratories inside EU countries, is gratefully acknowledged. Marina Bacac is grateful to the Callerio Foundation for providing a three-year fellowship grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Reedijk.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hotze, A.C.G., Caspers, S.E., de Vos, D. et al. Structure-dependent in vitro cytotoxicity of the isomeric complexes [Ru(L)2Cl2] (L=o-tolylazopyridine and 4-methyl-2-phenylazopyridine) in comparison to [Ru(azpy)2Cl2]. J Biol Inorg Chem 9, 354–364 (2004). https://doi.org/10.1007/s00775-004-0531-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-004-0531-6

Keywords

Navigation