Skip to main content
Log in

Morpholine adducts of Co, Ni, and Mn benzoylacetonates: isostructurality and C–H···O hydrogen bonding

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Morpholine adducts of nickel(II), cobalt(II), and manganese(II) benzoylacetonates, as well as a morpholine solvate of manganese(II) benzoylacetonate, were prepared and characterized by X-ray diffraction and thermal analysis. All four compounds crystallize in the P21/c space group with two complex molecules per unit cell. The morpholine solvate, along with the two adduct molecules, also contains four solvent morpholine molecules in the unit cell. The non-solvate compounds are isostructural, with crystal structures comprising 2D networks formed by C–H···O hydrogen bonding between phenyl rings and morpholine oxygen atoms. The topology of these networks can be described as intersecting C 22 (24) chains forming R 44 (48) rings. Networks with the same topology are also present in the solvate, but they are heavily distorted due to the presence of solvent morpholine molecules. Thermogravimetric analysis shows similar behavior of the non-solvate compounds upon thermal decomposition, with three degradation steps which can be related to gradual loss of morpholine molecules and subsequent overall decomposition. Decomposition of the solvate also proceeds in several steps, the first of which can be related to loss of solvent morpholine molecules and the further steps are analogous to those in the non-solvate compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Soldatov DV, Ripmeester JA (2001) Chem Eur J 7:2979–2994

    Article  CAS  Google Scholar 

  2. Soldatov DV, Enright GD, Ripmeester JA (1999) Supramol Chem 11:35–47

    Article  CAS  Google Scholar 

  3. Soldatov DV, Enright GD, Ratcliff GD, Henegouwen AT, Ripmeester JA (2001) Chem Mater 13:4322–4334

    Article  CAS  Google Scholar 

  4. Soldatov DV, Ripmeester JA (2001) Supramol Chem 12:357–368

    Article  CAS  Google Scholar 

  5. Soldatov DV, Enright GD, Ripmeester JA (2002) Chem Mater 14:348–356

    Article  CAS  Google Scholar 

  6. Shiga T, Nakanishi T, Ohba M, Ōkawa H (2005) Polyhedron 24:2732–2736

    Article  CAS  Google Scholar 

  7. Aguilà D, Barrios LA, Roubeau O, Teat SJ, Aromí G (2011) Chem Commun 47:707–709

    Article  Google Scholar 

  8. Hui Y–Y, Shu H-M, Hu H-M, Song J, Yao H-L, Yang XL, Wu Q-R, Yang M-L, Xue G-L (2010) Inorg Chim Acta 363:3238–3243

    Article  CAS  Google Scholar 

  9. Domasevitch KV, Vreshch VD, Lysenko AB, Krautscheid H (2006) Acta Crystallogr C62:m443–m447

    CAS  Google Scholar 

  10. Wang G-L, Lin Y-J, Berke H, Jin G-X (2010) Inorg Chem 49:2193–2201

    Article  CAS  Google Scholar 

  11. Li B-L, Zhu L-M, Wang S-W, Lang J-P, Zhang Y (2003) J Coord Chem 56:933–941

    Article  CAS  Google Scholar 

  12. Zhou Y, Han L, Pan J-G, Li X (2009) Jiegou Huaxue (Chin J Struct Chem) 28:348–352

    CAS  Google Scholar 

  13. Han L, Zhou Y (2008) Inorg Chem Commun 11:385–387

    Article  CAS  Google Scholar 

  14. Li B-L, Lang J-P, Wang S-W, Zhang Y (2005) J Chem Cryst 35:547–550

    Article  CAS  Google Scholar 

  15. Döring M, Ludwig W, Uhlig E, Wočadlo S, Müller U (1992) Z Anorg Allg Chem 611:61–67

    Article  Google Scholar 

  16. Ruiz JCG, Nöth H, Warchhold M (2008) Eur J Inorg Chem 2:251–266

    Article  Google Scholar 

  17. Willett RD, Butcher R, Landee CP, Twamley B (2005) Polyhedron 24:2222–2231

    Article  CAS  Google Scholar 

  18. Lapadula G, Judaš N, Friščić T, Jones W (2010) Chem Eur J 16:7400–7403

    Article  CAS  Google Scholar 

  19. Clegg JK, Hayter MJ, Jolliffe KA, Lindoy LF, McMurtrie JC, Meehan GV, Neville SM, Parsons S, Tasker PA, Turner P, White FJ (2010) Dalton Trans 39:2804–2815

    Article  CAS  Google Scholar 

  20. Chen X-H, Wu Q-J, Chen S-Y, Huang S-M, Jiang F–F (2010) Wuji Huaxue Xuebao (Chin J Inorg Chem) 26:1573

    CAS  Google Scholar 

  21. Lian Z-X, Liu P, Zhang J-M, Lou T-J, Wang T-X, Li HH (2008) Jiegou Huaxue (Chin J Struct Chem) 27:639–644

    CAS  Google Scholar 

  22. Weinberger P, Schamschule R, Mereiter K, Dlhán L, Boca R, Linert W (1998) J Mol Struct 446:115–126

    Article  CAS  Google Scholar 

  23. Ivanov AV, Kritikos M, Antzutkin ON, Forsling W (2001) Inorg Chim Acta 321:63–74

    Article  CAS  Google Scholar 

  24. Bučar D-K, Meštrović E (2003) Acta Crystallogr E59:m985–m987

    Google Scholar 

  25. Meštrović E, Halasz I, Bučar DK, Žgela M (2004) Acta Crystallogr E60:m367–m369

    Google Scholar 

  26. Feng Y-L (2003) Jiegou Huaxue (Chin J Struct Chem) 22:444–446

    CAS  Google Scholar 

  27. Belford RL, Chasteen ND, Hitchman MA, Hon P-K, Pfluger CE, Paul IC (1969) Inorg Chem 8:1312–1319

    Article  CAS  Google Scholar 

  28. Meštrović E, Bučar D-K (2005) Acta Crystallogr E61:m522–m524

    Google Scholar 

  29. Lennartson A, Håkansson M, Jagner S (2007) New J Chem 31:344–347

    Article  CAS  Google Scholar 

  30. Dang F–F, Lei K-W, Wang Y-W, Liu W-S, Sun Y-X (2006) Anal Sci X 22:x279–x280

    Article  CAS  Google Scholar 

  31. Zhou Y, Zhao W-N, Han L (2009) Acta Crystallogr E65:m423–m424

    CAS  Google Scholar 

  32. Miyamoto K, Murata F, Horn E, Fukuda Y (2005) Z Kristallogr NCS 220:31–32

    Article  CAS  Google Scholar 

  33. Feng Y-L (2002) Wuji Huaxue Xuebao (Chin J Inorg Chem) 18:723

    CAS  Google Scholar 

  34. Altomare A, Cascanaro G, Giacovazzo C, Gualardi A (1993) J Appl Crystallogr 26:343–350

    Article  Google Scholar 

  35. Sheldrick GM (2008) Acta Crystallogr A64:112–122

    CAS  Google Scholar 

  36. Philips X’Pert Data Collector 1.3e, Philips Analytical B. V. Netherlands, 2001

  37. Philips X’Pert Graphic & Identify 1.3e, Philips Analytical B. V. Netherlands, 2001

  38. Philips X’Pert Plus 1.0, Philips Analytical B. V. Netherlands, 1999

  39. STARe Software V.9.01., Mettler Toledo GmbH, 2006

  40. Kálmán A, Párkányi L, Argay G (1993) Acta Crystallogr B49:1039–1049

    Google Scholar 

  41. Allen FH (2002) Acta Crystallogr B58:380–388

    CAS  Google Scholar 

  42. Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Angew Chem Int Ed 34:1555–1573

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by grants from the Ministry of Science and Technology of the Republic of Croatia (Grant No. 119-1193079-3069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Stilinović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cvrtila, I., Stilinović, V. & Kaitner, B. Morpholine adducts of Co, Ni, and Mn benzoylacetonates: isostructurality and C–H···O hydrogen bonding. Struct Chem 23, 587–594 (2012). https://doi.org/10.1007/s11224-011-9905-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9905-x

Keywords

Navigation