Skip to main content
Log in

Density functional theory study on (F2AlN3) n (n = 1–4) clusters

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Possible geometrical structures and relative stabilities of (F2AlN3) n (n = 1–4) clusters were studied using density functional theory at the B3LYP/6-311+G* level. The optimized clusters (F2AlN3) n (n = 2–4) possess cyclic structure containing Al–Nα–Al linkages, and azido in azides has linear structure. The IR spectra of the optimized (F2AlN3) n (n = 1–4) clusters have three vibrational sections, the whole strongest vibrational peaks lie in 2218–2246 cm−1, and the vibrational modes are N3 asymmetric stretching vibrations. Trends in thermodynamic properties with temperature and oligomerization degree n are discussed, respectively. A study of their thermodynamic properties suggests that monomer 1A forms the most stable clusters (2A, 3A, and 4B) can occur spontaneously in the gas phase at temperatures up to 800 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hashman TW, Pratsinis SE (1992) J Am Ceram Soc 75:920–928

    Article  CAS  Google Scholar 

  2. Lee WY, Lackey WJ, Agrawal PK (1991) J Am Ceram Soc 74:1821–1827

    Article  CAS  Google Scholar 

  3. Sheppard LM (1990) Am Ceram Soc Bull 69:1801–1812

    Google Scholar 

  4. Boyd DC, Haasch RT, Mantell DR, Schulze RK, Evans JF, Gladfelter WL (1989) Chem Mater 1:119–124

    Article  CAS  Google Scholar 

  5. Schulze RK, Boyd DC, Evans JF, Gladfelter WL (1990) J Vac Sci Technol A 8:2338–2343

    Article  CAS  Google Scholar 

  6. Kouvetakis J, McMurran J, Steffek C, Groy TL, Hubbard JL, Torrison L (2001) Main Group Met Chem 24:77–84

    Article  CAS  Google Scholar 

  7. Schulze RK, Mantell DR, Gladfelter WL, Evans JF (1988) J Vac Sci Technol A 6:2162–2163

    Article  Google Scholar 

  8. Gladfelter WL, Boyd DC, Hwang JW, Haasch RT, Evans JF, Ho KL, Jensen KF (1989) Mater Res Soc Symp Proc 131:447–452

    Article  CAS  Google Scholar 

  9. Ho KL, Jensen KF, Hwang JW, Gladfelter WL, Evans JF (1991) J Cryst Growth 107:376–380

    Article  CAS  Google Scholar 

  10. Dehnicke K, Strähle J, Seybold D, Müller J (1966) J Organomet Chem 6:298–300

    Article  CAS  Google Scholar 

  11. Müller J, Dehnicke K (1968) J Organomet Chem 12:37–47

    Article  Google Scholar 

  12. McMurran J, Kouvetakis J (1999) Appl Phys Lett 74:883–885

    Article  CAS  Google Scholar 

  13. McMurran J, Dai D, Balasubramanian K, Steffek C, Kouvetakis J, Hubbard JL (1998) Inorg Chem 37:6638–6644

    Article  CAS  Google Scholar 

  14. McMurran J, Kouvetakis J, Nesting DC, Smith DJ, Hubbard JL (1998) J Am Chem Soc 120:5233–5237

    Article  CAS  Google Scholar 

  15. Crozier PA, Tolle J, Kouvetakis J, Ritter C (2004) Appl Phys Lett 84:3441–3443

    Article  CAS  Google Scholar 

  16. McMurran J, Todd M, Kouvetakis J (1996) Appl Phys Lett 69:203–205

    Article  CAS  Google Scholar 

  17. Dehnicke K, Krüger N (1978) Z Anorg Allg Chem 444:71–76

    Article  CAS  Google Scholar 

  18. Xia QY, Xiao HM, Ju XH, Gong XD (2004) J Phys Chem A 108:2780–2786

    Article  CAS  Google Scholar 

  19. Timoshkin AY, Schaefer HF (2008) J Phys Chem A 112:13180–13196

    Article  CAS  Google Scholar 

  20. Timoshkin AY, Schaefer HF (2010) J Phys Chem A 114:516–525

    Article  CAS  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 revision B 03. Gaussian, Inc, Pittsburgh

    Google Scholar 

  22. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  23. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  24. Scott AP, Radom L (1996) J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  25. Hill TL (1960) Introduction to statistic thermodynamics. Addison-Wesley Press, New York

    Google Scholar 

  26. Xia QY, Xiao HM, Ju XH, Gong XD (2004) Chin J Chem 22:1245–1249

    Article  CAS  Google Scholar 

  27. Kouvetakis J, McMurran J, Steffek C, Groy TL, Hubbard JL (2000) Inorg Chem 39:3805–3809

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Ying Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, QY., Ma, DX., Lin, QF. et al. Density functional theory study on (F2AlN3) n (n = 1–4) clusters. Struct Chem 23, 545–550 (2012). https://doi.org/10.1007/s11224-011-9902-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9902-0

Keywords

Navigation