Skip to main content
Log in

A DFT study on the structure–property relationship of amino-, nitro- and nitrosotetrazoles, and their N-oxides: new high energy density molecules

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

We explore herein the structure, stability, heat of explosion, density, and the performance properties of amino, nitro, and nitroso substituted tetrazoles and their N-oxides using the density functional theory calculations at the B3LYP/aug-cc-pVDZ level. N-Nitro compounds have lower densities compared with those of C-nitrotetrazoles. Kamlet-Jacob semi-empirical equations were used to calculate the performance properties of designed compounds. The higher performance of tetrazole-N-oxides is due to their higher densities (2.110–2.287 g/cm3). Heat of explosion, stability, density and performance properties are related to the number and relative positions of NO2, NH2, and NO groups of the tetrazole ring. The designed molecules satisfy the criteria of high energy materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Klapötke TM (2007) In: Klapötke TM (ed) High energy density materials. Springer, Berlin

    Chapter  Google Scholar 

  2. Klapötke TM, Miro-Sabate C, Welch JM (2008) Z Anorg Allg Chem 634:857

    Article  Google Scholar 

  3. Klapötke TM, Mayer P, Miro-Sabae C, Welch JM, Wiegand N (2008) Inorg Chem 47:6014

    Article  Google Scholar 

  4. von Denffer M, Klapötke TM, Miro-Sabate C (2008) Z Anorg Allg Chem 634:2575

    Article  Google Scholar 

  5. Klapötke TM, Miro-Sabate C, Welch JM (2008) Dalton Trans p 6372

  6. Stierstorfer J, Klapötke TM, Hammerl A, Chapman B (2008) Z Anorg Allg Chem 634:1051

    Article  CAS  Google Scholar 

  7. Klapötke TM, Stierstorfer J (2007) Helv Chim Acta 90:2132

    Article  Google Scholar 

  8. Klapötke TM, Miro-Sabate C (2007) Z Anorg Allg Chem 633:2671

    Article  Google Scholar 

  9. Darwich C, Klapötke TM, Miro-Sabate C (2008) Chem Eur J 14:5756

    Article  CAS  Google Scholar 

  10. Ye C, Xiao J C, Twamley B, Shreeve J M (2005) Chem Commun p 2750

  11. Xue H, Arritt SW, Twamley B, Shreeve JM (2004) Inorg Chem 43:7972

    Article  CAS  Google Scholar 

  12. Xue H, Gao Y, Twamley B, Shreeve JM (2005) Chem Mater 17:191

    Article  CAS  Google Scholar 

  13. Xue H, Gao Y, Twamley B, Shreeve JM (2005) Inorg Chem 44:5068

    Article  CAS  Google Scholar 

  14. Gao Y, Twamley B, Shreeve JM (2006) Chem Eur J 12:9010

    Article  CAS  Google Scholar 

  15. Zhang C, Wang X, Huang H (2008) J Am Chem Soc 130:8359

    Article  CAS  Google Scholar 

  16. Molchanova MS, Pivina TS, Arnautova EA, Zefirov NS (1999) J Mol Struct 465:11

    Google Scholar 

  17. Jia-Rong L, Jian-Min Z, Hai-Shan D (2005) J Chem Crystallogr 35:943

    Article  Google Scholar 

  18. Churakov AM, Tartakovsky VA (2004) Chem Rev 104:2601

    Article  CAS  Google Scholar 

  19. Inagake S, Goto N (1987) J Am Chem Soc 109:3234

    Article  Google Scholar 

  20. Noyman M, Zilberg S, Haas Y (2009) J Phys Chem A 113:7376

    Article  CAS  Google Scholar 

  21. Liepa AJ, Jones DA, Mc Carthy TD, Nearn RH (2000) Aust J Chem 53:619

    Article  CAS  Google Scholar 

  22. Harel T, Rozen S (2010) J Org Chem 75:3141

    Article  CAS  Google Scholar 

  23. Göbel M, Karaghisosoff K, Klapötke TM, Piercy DG, Stierstorfer J (2010) J Am Chem Soc 132:17216

    Article  Google Scholar 

  24. Fukui F, Yonezawa T, Shingu H (1952) J Chem Phys 20:722

    Article  CAS  Google Scholar 

  25. Materials Studio Version 4.1 (2004) Accelrys Inc., San Diego

  26. Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23

    Article  CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery AJ, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain M, Farkas CO, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B.04. Gaussian Inc., Pittsburgh

    Google Scholar 

  28. Ravi P, Gore GM, Venkatesan V, Tewari SP, Sikder AK (2010) J Hazard Mater 183:859

    Article  CAS  Google Scholar 

  29. Ravi P, Shee SK, Gore GM, Tewari SP, Sikder AK (2011) Struct Chem 22:661

    Article  CAS  Google Scholar 

  30. Ravi P, Gore G M, Tewari S P, Sikder A K (2011) J Mol Model. doi:10.1007/s00894-011-1099-z

  31. Njegic B, Gordan MS (2006) J Chem Phys 125:224102

    Article  Google Scholar 

  32. Akhavan J (1998) In: Chemistry of explosives, The Royal Society of Chemistry, Cambridge

  33. Larina L, Lopyrev V (2009) In: Nitroazoles: synthesis, structure and application, Springer, New York

  34. Zhou Z, Parr RG (1990) J Am Chem Soc 112:5720

    Article  CAS  Google Scholar 

  35. Pearson RG (1989) J Org Chem 54:1423

    Article  CAS  Google Scholar 

  36. Pinkerton AA, Zhuorva EA, Chen Y-S (2003) In: Politzer P, Murray JS (eds) Energetic materials, theoretical and computational chemistry series. Elsevier, New York

    Google Scholar 

  37. Goh EM, Cho SG, Kim JK (2001) In: A novel QSPR method to estimate densities of energetic materials, 222nd ACS National Meeting, Chicago, 26–30 Aug 2001

  38. Ammon HL (2001) Struct Chem 21:205

    Article  Google Scholar 

  39. Sorescu DC, Rice BM, Thompson DL (2000) J Phys Chem B 104:8406

    Article  CAS  Google Scholar 

  40. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbe A (2009) Mol Phys 107:2095

    Article  CAS  Google Scholar 

  41. Kim CK, Cho SG, Kim CK, Park HY, Zhang H, Lee H (2008) J Comput Chem 29:1818

    Article  CAS  Google Scholar 

  42. Belsky VK, Zorkii PM (1977) Acta Crystallogr Sect A 13:1004

    Article  Google Scholar 

  43. Lide DR (2006) CRC handbook of chemistry and physics, 87th edn. CRC Press, Boca Raton

    Google Scholar 

  44. Hoffman DM (2003) Prop Explos Pyrotech 28:194

    Article  CAS  Google Scholar 

  45. Eaton PE, Gilardi R, Zhang MX (2000) Adv Mater 12:1143

    Article  CAS  Google Scholar 

  46. Politzer P, Murray JS (2011) Cen Eur Energ Mater 8:209

    CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to the referees for their useful suggestions. The first author acknowledges the sustaining financial support from Defense Research Development Organization (DRDO), India through Advanced Centre of Research in High Energy Materials (ACRHEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ravi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravi, P., Tewari, S.P. A DFT study on the structure–property relationship of amino-, nitro- and nitrosotetrazoles, and their N-oxides: new high energy density molecules. Struct Chem 23, 487–498 (2012). https://doi.org/10.1007/s11224-011-9898-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9898-5

Keywords

Navigation