Skip to main content

Advertisement

Log in

Theoretical studies on the structures, densities, detonation properties and pyrolysis mechanism of energetic compounds containing pyridine ring

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Density function theory has been employed to study a series of compounds containing pyridine ring at the B3LYP/6-31G* level. Detonation performance was evaluated by using the Kamlet–Jacobs equations based on the calculated densities and heats of formation. Some compounds have high densities (ca. 1.9 g cm−3) and good performance (detonation velocities over 9 km s−1, detonation pressures about 39 GPa) and may be the potential candidates of high energy density materials. The thermal stability and the pyrolysis mechanism of the title compounds were investigated by the bond dissociation energies and the impact sensitivity predicted. Solvent effect has been investigated and it makes the title compounds more stable in solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Borman S (1994) Chem Eng News 72:18

    Article  Google Scholar 

  2. Olah GA, Squire DR (1991) Chemistry of energetic materials. Academic Press, San Diego

    Google Scholar 

  3. Xiao HM (1993) Molecular orbital theory for nitro compounds. National Defence Industry Press, Beijing

    Google Scholar 

  4. Wang GX, Xiao HM (2007) Acta Chim Sin 65:517

    CAS  Google Scholar 

  5. Ritter H, Licht HH (1995) J Heterocycl Chem 32:585

    Article  CAS  Google Scholar 

  6. Hollins RA, Merwin LM, Nissan RA (1996) J Heterocycl Chem 33:895

    Article  CAS  Google Scholar 

  7. Ritter H, Licht HH (1988) Propellants Explos Pyrotech 13:25

    Article  Google Scholar 

  8. Cheng J, Yao QZ (2008) Chin J Org Chem 28:1943

    CAS  Google Scholar 

  9. Chavez DE, Hiskey MA, Gilardi RD (2000) Angew Chem 39:1971

    Google Scholar 

  10. Turker L, Atalar T (2006) J Hazard Mater 137:1333

    Article  Google Scholar 

  11. Johnson MA, Truong TN (1999) J Phys Chem B 103:9392

    Article  CAS  Google Scholar 

  12. Zeman S, Trcinski WA, Matyas R (2008) J Hazard Mater 154:192

    Article  CAS  Google Scholar 

  13. Turker L (2009) J Energ Mater 27:94

    Article  CAS  Google Scholar 

  14. Turker L, Atalar T, Gumus S, amur YC (2009) J Hazard Mater 167:440

    Article  Google Scholar 

  15. Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Ann Rev Mater Res 31:291

    Article  CAS  Google Scholar 

  16. Lu M, Nie FD (2010) Chin J Energ Mater 18:618

    CAS  Google Scholar 

  17. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  18. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  19. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213

    Article  CAS  Google Scholar 

  20. Xiao HM, Xu XJ, Qiu L (2008) Theoretical design of high energy density materials. Science Press, Beijing

    Google Scholar 

  21. Xiao HM (2004) Structures and properties of energetic compounds. National Defence Industry Press, Beijing

    Google Scholar 

  22. Chen ZX, Xiao JM, Xiao HM, Chiu YN (1999) J Phys Chem A 103:8062

    Article  CAS  Google Scholar 

  23. Zhang J, Xiao HM (2002) J Chem Phys 116:10674

    Article  CAS  Google Scholar 

  24. Xu XJ, Xiao HM, Ju XH, Gong XD, Zhu WH (2006) J Phys Chem A 110:5929

    Article  CAS  Google Scholar 

  25. Wang GX, Gong XD, Liu Y, Xiao HM (2010) Int J Quantum Chem 110:1691

    CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, MontgomeryJr JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J,.Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK,.Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG,. Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R,.Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian03. Gaussian, Inc, Pittsburgh

  27. Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23

    Article  CAS  Google Scholar 

  28. Zhang XH, Yun ZH (1989) Explosive chemistry. National Defence Industry Press, Beijing

    Google Scholar 

  29. Xu XJ, Xiao HM, Gong XD, Ju XH, Chen ZX (2005) J Phys Chem A 109:11268

    Article  CAS  Google Scholar 

  30. Qiu L, Xiao HM, Gong XD, Ju XH, Zhu WH (2006) J Phys Chem A 110:3797

    Article  CAS  Google Scholar 

  31. Qiu L, Xiao HM, Ju XH, Gong XD (2005) J Quantum Chem 105:48

    Article  CAS  Google Scholar 

  32. Xu XJ, Xiao HM, Ma XF, Ju XH (2006) J Quantum Chem 106:1561

    Article  CAS  Google Scholar 

  33. Xu XJ, Xiao HM, Wang GX, Ju XH (2006) Chin J Chem Phys 19:395

    Article  CAS  Google Scholar 

  34. Xiao HM, Zhang J (2002) Sci China Ser B 45:21

    Article  CAS  Google Scholar 

  35. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) Mol Phys 107:2095

    Article  CAS  Google Scholar 

  36. Lide DR (ed) (2005) CRC handbook of chemistry and physics. Internet Version 2005

  37. Rice BM, Pai SV, Hare J (1999) Combust Flame 118:445

    Article  CAS  Google Scholar 

  38. Politzer P, Lane P, Murray JS (2011) Central Eur J Energ Mater 8:39

    CAS  Google Scholar 

  39. Editorial Committee of Explosive Theory (1982) Explosive theory. National Defense Industrial Press, Beijing (in Chinese)

    Google Scholar 

  40. Stewart JJP (1989) J Comput Chem 10:209

    Article  CAS  Google Scholar 

  41. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) J Mol Model 16:895

    Article  Google Scholar 

  42. Wong MW, Frisch MJ, Wiberg KB (1991) J Am Chem Soc 113:4776

    Article  CAS  Google Scholar 

  43. Wong MW, Frisch MJ, Wiberg KB (1992) J Am Chem Soc 114:523

    Article  CAS  Google Scholar 

  44. Wong MW, Frisch MJ, Wiberg KB (1991) J Chem Phys 95:8991

    Article  CAS  Google Scholar 

  45. Wong MW, Wiberg KB, Frischt MJ (1992) J Am Chem Soc 114:1645

    Article  CAS  Google Scholar 

  46. Liu Y, Du HC, Wang GX, Gong XD, Wang LJ, Xiao HM (2011) Int J Quantum Chem 111:1115

    Article  CAS  Google Scholar 

  47. Archibald TG, Gilardi R, Baum K, George C (1990) J Org Chem 55:2920

    Article  CAS  Google Scholar 

  48. Mader CL (1998) Numerical modeling of explosives and propellants, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  49. Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KJ, Hoffman DM (1997) Propellants Explos Pyrotech 22:249

    Article  CAS  Google Scholar 

  50. Qiu LM, Gong XD, Zheng J, Xiao HM (2009) J Hazard Mater 166:931

    Article  CAS  Google Scholar 

  51. Rice BM, Hare JJ (2002) J Phys Chem A 106:1770

    Article  CAS  Google Scholar 

  52. Ghule VD, Jadhav PM, Patil RS, Radhakrishnan S, Soman T (2010) J Phys Chem A 114:498

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Thanks to the National Natural Science Foundation of China (NSAF Grant No. 11076017) for supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuedong Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Du, H., Wang, G. et al. Theoretical studies on the structures, densities, detonation properties and pyrolysis mechanism of energetic compounds containing pyridine ring. Struct Chem 23, 479–486 (2012). https://doi.org/10.1007/s11224-011-9896-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9896-7

Keywords

Navigation