Skip to main content
Log in

The single-electron hydrogen, lithium, and halogen bonds with HBe, H2B, and H3C radicals as the electron donor: an ab initio study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Quantum chemical calculations have been performed for the complexes with HBe, H2B, and H3C radicals as the electron donors and with HF, LiF, and ClF as the electron acceptors. For HBe, H2B, and H3C radicals, the ability of donating electrons is dependent on the nature of the electron donor atom. In addition, it is also affected by the nature of the electron acceptor atom. A partially covalent bond is formed in HBe–Cl···F and H2B–Cl···F complexes, which exhibits a large interaction energy, short binding distance, large bond elongation, and big frequency shift. The complexes have also been analyzed with natural bond orbital and atoms in molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Scheiner S (1997) Hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  2. Frank HS, Wen WY (1957) Discuss Faraday Soc 24:133

    Article  Google Scholar 

  3. Desiraju GR, Steiner T (1999) The weak hydrogen bond. Oxford University Press, Oxford

    Google Scholar 

  4. Shigorin DN (1959) Spectrochim Acta 141:69

    Google Scholar 

  5. Kollman PA, Liebman JF, Allen LC (1970) J Am Chem Soc 92:1142

    Article  CAS  Google Scholar 

  6. Ault BS, Pimentel GC (1975) J Phys Chem 79:621

    Article  CAS  Google Scholar 

  7. Karpfen A (2003) Theor Chem Acc 110:1

    Article  CAS  Google Scholar 

  8. Legon AC (2010) Phys Chem Chem Phys 12:7736

    Article  CAS  Google Scholar 

  9. Politzer P, Murray JS, Peralta-Inga Z (2001) Int J Quantum Chem 85:676

    Article  CAS  Google Scholar 

  10. Li RY, Li ZR, Wu D, Li Y, Chen W, Sun CC (2005) J Phys Chem A 109:2608

    Article  CAS  Google Scholar 

  11. Lipkowski P, Grabowski S, Leszczynski J (2006) J Phys Chem A 110:10296

    Article  CAS  Google Scholar 

  12. Li QZ, Dong X, Jing B, Li WZ, Cheng JB, Gong BA, Yu ZW (2010) J Comput Chem 311:1662

    Google Scholar 

  13. Panek JJ, Berski S (2008) Chem Phys Lett 467:41

    Article  CAS  Google Scholar 

  14. Wang WZ, Zhang Y, Ji BM (2010) J Phys Chem A 114:7257

    Article  CAS  Google Scholar 

  15. Cheng JB, Li R, Li QZ, Jing B, Liu ZB, Li WZ, Gong BA, Sun JZ (2010) J Phys Chem A 114:10320

    Article  CAS  Google Scholar 

  16. Zou JW, Jiang YJ, Guo M, Hu GX, Zhang B, Liu HC, Yu QS (2005) Chem Eur J 11:740

    Article  CAS  Google Scholar 

  17. Voth AR, Hays FA, Ho PS (2007) Proc Natl Acad Sci USA 104:6188

    Article  CAS  Google Scholar 

  18. Aakeröy CB, Champness NR, Janiak C (2010) CrystEngComm 12:22

    Article  Google Scholar 

  19. Metrangolo P, Resnati G, Pilati T, Biella S (2008) Struct Bond 126:105

    Article  CAS  Google Scholar 

  20. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748

    Article  CAS  Google Scholar 

  21. Murray JS, Lane P, Politzer P (2009) J Mol Model 15:723

    Article  CAS  Google Scholar 

  22. Politzer P, Murray JS, Lane P (2007) Int J Quantum Chem 107:3046

    Article  CAS  Google Scholar 

  23. Jones CM, Burkitt MJ (2002) J Chem Soc Perkin Trans 2:2044

    Google Scholar 

  24. Wayne P, Barnes I, Biggs P, Burrows JP, Canosa-Mas CE, Hjorth J, Le Bras G, Moortgat GK, Perner D, Poulet G, Restelli G, Sidebottom H (1991) Atmos Environ A 251:203

    Google Scholar 

  25. Wang BQ, Li ZR, Wu D, Hao XY, Li RJ, Sun CC (2003) Chem Phys Lett 375:91

    Article  CAS  Google Scholar 

  26. Li Y, Wu D, Li ZR, Chen W, Sun CC (2006) J Chem Phys 125:084317

    Article  Google Scholar 

  27. Wang H, Zou JW, Lu YX, Lu QS, Xu HY (2007) Int J Quantum Chem 107:501

    Article  CAS  Google Scholar 

  28. Chen Y, Tshkuikow-Roux E, Rauk A (1991) J Phys Chem 95:9832

    Article  CAS  Google Scholar 

  29. Igarashi M, Ishibashi T, Tachikawa H (2002) J Mol Struct (Theochem) 594:61

    Article  CAS  Google Scholar 

  30. Solimannejad M, Alikhani ME (2005) Chem Phys Lett 406:351

    Article  CAS  Google Scholar 

  31. Li QZ, An XL, Luan F, Li WZ, Gong BA, Cheng JB, Sun JZ (2008) J Chem Phys 128:154102

    Article  Google Scholar 

  32. Li QZ, Zhu HJ, An XL, Gong BA, Cheng JB (2009) Int J Quantum Chem 109:605

    Article  CAS  Google Scholar 

  33. Li ZF, Shi XN, Liu YZ, Tang HA, Zhang JY (2009) Chin J Chem Phys 22:303

    Article  CAS  Google Scholar 

  34. Li QZ, An XL, Gong BA, Cheng JB (2008) J Mol Struct (Theochem) 866:11

    Article  CAS  Google Scholar 

  35. Solimannejad M, Alkorta I (2006) J Phys Chem A 110:10817

    Article  CAS  Google Scholar 

  36. Li ZF, Zhang YQ, Li HX, Zhu YC, Yang S (2010) J Mol Struct (Theochem) 958:48

    Article  CAS  Google Scholar 

  37. Li ZF, Li HX, Zhu YC, Zuo GF (2009) Chem Phys Lett 482:160

    Article  CAS  Google Scholar 

  38. Qi XJ, Liu L, Fu Y, Guo QX (2005) Struct Chem 16:347

    Article  CAS  Google Scholar 

  39. Raghavendra B, Arunan E (2007) J Phys Chem A 111:9699

    Article  CAS  Google Scholar 

  40. Jing B, Li QZ, Gong BA, Cheng JB, Li WZ, Liu ZB (2010) Mol Phys 108:1655

    Article  CAS  Google Scholar 

  41. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  42. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  43. Biegler-König F (2000) AIM2000. University of Applied Sciences, Bielefeld

    Google Scholar 

  44. Frisch MJ Trucks GW Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JrJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox J. E, Cross J. B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian Inc., Wallingford CT

  45. Del Bene JE, Alkorta I, Elguero J (2010) J Phys Chem A 114:12958

    Article  CAS  Google Scholar 

  46. Salai Cheettu Ammal S, Venuvanalingam P (1998) J Chem Phys 109:9820

    Article  Google Scholar 

  47. Koch U, Popelier PLA (1995) J Phys Chem A 999:747

    Google Scholar 

  48. Arnold WD, Oldfield E (2000) J Am Chem Soc 122:12835

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (20973149), the Program for New Century Excellent Talents in University, and the Outstanding Youth Natural Science Foundation of Shandong Province (JQ201006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Li, R., Yi, S. et al. The single-electron hydrogen, lithium, and halogen bonds with HBe, H2B, and H3C radicals as the electron donor: an ab initio study. Struct Chem 23, 411–416 (2012). https://doi.org/10.1007/s11224-011-9884-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9884-y

Keywords

Navigation