Skip to main content
Log in

Hemibond complexes between H2S and free radicals (F, Cl, Br, and OH)

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The interaction of hydrogen sulfide (H2S) with F, Cl, Br, and OH is investigated using ab initio methods to identify the two-center three-electron hemibond responsible for their complexation. The binding energies are found to be stronger than those in the analogous water complexes, but follow the same trend of increasing strength: F > Cl > Br > OH. The radicals are located nearly perpendicular to the H2S plane forming an angle of about 90°. Analysis of molecular orbitals and natural bond orbitals are carried out to understand the energetics, structures, and bonding characteristics of these hemibonded complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Nature 326:655

    Article  CAS  Google Scholar 

  2. Warneck P (2000) Chemistry of the natural atmosphere. Academic Press, San Diego

    Google Scholar 

  3. Glassman I (1996) Combustion, 3rd edn. Academic Press, San Diego

    Google Scholar 

  4. Li J, Dawes R, Guo H (2012) J Chem Phys 137:094304

    Article  Google Scholar 

  5. Li J, Jiang B, Guo H (2013) J Chem Phys 138:074309

    Article  Google Scholar 

  6. Li J, Jiang B, Guo H (2013) J Am Chem Soc 135:982

    Article  CAS  Google Scholar 

  7. Nguyen TL, Li J, Dawes R, Stanton JF, Guo H (2013) J Phys Chem A 117:8864

    Article  CAS  Google Scholar 

  8. Li J, Guo H (2013) Chin J Chem Phys 26:627

    Article  CAS  Google Scholar 

  9. Li J, Dawes R, Guo H (2013) J Chem Phys 139:074302

    Article  Google Scholar 

  10. Deskevich MP, Nesbitt DJ, Werner H-J (2004) J Chem Phys 120:7281

    Article  CAS  Google Scholar 

  11. Li G, Zhou L, Li Q-S, Xie Y, Schaefer HF III (2012) Phys Chem Chem Phys 14:10891

    Article  CAS  Google Scholar 

  12. Guo Y, Zhang M, Xie Y, Schaefer HF III (2013) J Chem Phys 139:041101

    Article  Google Scholar 

  13. de Oliveira-Filho AGS, Ornellas FR, Bowman JM (2014) J Phys Chem Lett 5:706

    Article  Google Scholar 

  14. Li J, Jiang B, Guo H (2013) Chem Sci 4:629

    Article  CAS  Google Scholar 

  15. Li J, Li Y, Guo H (2013) J Chem Phys 138:141102

    Article  Google Scholar 

  16. Pauling L (1931) J Am Chem Soc 53:3225

    Article  CAS  Google Scholar 

  17. Gill PMW, Radom L (1988) J Am Chem Soc 110:4931

    Article  CAS  Google Scholar 

  18. Fourré I, Silvi B (2007) Heteroatom Chem 18:135

    Article  Google Scholar 

  19. Deng Y, Illies AJ, James MA, McKee ML, Peschke M (1995) J Am Chem Soc 117:420

    Article  CAS  Google Scholar 

  20. McKee ML, Nicolaides A, Radom L (1996) J Am Chem Soc 118:10571

    Article  CAS  Google Scholar 

  21. Nichols LS, Illies AJ (1999) J Am Chem Soc 121:9176

    Article  CAS  Google Scholar 

  22. Braïda B, Hazebroucq S, Hiberty PC (2002) J Am Chem Soc 124:2371

    Article  Google Scholar 

  23. Gao Y, Alecu IM, Hsieh P-C, Morgan BP, Marshall P, Krasnoperov LN (2006) J Phys Chem A 110:6844

    Article  CAS  Google Scholar 

  24. Aloisio S (2006) Chem Phys 326:335

    Article  CAS  Google Scholar 

  25. Joshi R, Ghanty TK, Naumov S, Mukherjee T (2007) J Phys Chem A 111:2362

    Article  CAS  Google Scholar 

  26. Pathak AK, Mukherjee T, Maity DK (2008) J Mol Struct Theochem 851:158

    Article  CAS  Google Scholar 

  27. Fourré I, Bergès J, Houée-Levin C (2010) J Phys Chem A 114:7359

    Article  Google Scholar 

  28. Monge-Palacios M, Espinosa-Garcia J (2010) J Phys Chem A 114:4418

    Article  CAS  Google Scholar 

  29. Chipman DM (2011) J Phys Chem A 115:1161

    Article  CAS  Google Scholar 

  30. Yamaguchi M (2011) J Phys Chem A 115:14620

    Article  CAS  Google Scholar 

  31. Codorniu-Hernandez E, Boese AD, Kusalik PG (2013) Can J Chem 91:544

    Article  CAS  Google Scholar 

  32. Adler TB, Knizia G, Werner H-J (2007) J Chem Phys 127:221106

    Article  Google Scholar 

  33. Knizia G, Adler TB, Werner H-J (2009) J Chem Phys 130:054104

    Article  Google Scholar 

  34. Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  35. Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M et al (2012) MOLPRO, version 2012.1, a package of ab initio programs. http://www.molpro.net

  36. Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) J Phys Chem A 104:4811

    Article  CAS  Google Scholar 

  37. Weinhold F, Landis CR (2005) Valency and bonding. A natural bond orbital donor–acceptor perspective. Cambridge University Press, Cambridge

    Book  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, J. A., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc., Vol. A.01, Wallingford CT

  39. Tentscher PR, Arey JS (2013) J Chem Theo Comput 9:1568

    Article  CAS  Google Scholar 

  40. Hayes WM (2014) CRC handbook of chemistry and physics. Taylor and Francis, Boca Raton

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Energy (DE-FG02-05ER15694). The computations were performed at the National Energy Research Scientific Computing (NERSC) Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Guo.

Additional information

Dedicated to Professor Guosen Yan and published as part of the special collection of articles celebrating his 85th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alday, B., Johnson, R., Li, J. et al. Hemibond complexes between H2S and free radicals (F, Cl, Br, and OH). Theor Chem Acc 133, 1540 (2014). https://doi.org/10.1007/s00214-014-1540-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1540-3

Keywords

Navigation