Skip to main content
Log in

Stability of HIV-1 integrase–ligand complexes: the role of coordinating bonds

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

It is known that the HIV-1 integrase (IN) strand transfer inhibitors include the chelating fragments forming the coordinating bonds with two Mg2+ ions placed in the IN active site. The subject of the article is the role of these coordination bonds on stability of ligand–IN complexes. For this purpose, a set of ligand–IN complexes was investigated theoretically and experimentally. The theoretical model is based on the quantum-chemistry calculations of coordinating bonds geometry and energy. Solvent effects were taking into account using the implicit water model and the two-stage calculation scheme developed previously. For the experimental part of our study a set of the ligands was synthesized, and their IC50 values of IN inhibiting have been measured. It is shown that the main contribution to ligand–IN complexes stability is caused by the substitution of water molecules by the ligand in the first coordination sphere of two Mg2+ ions, and the change in the polarization energy of the bulk water. It is shown, that acid–base equilibrium and tautomeric forms of the ligands should be taken into account to improve the prediction ability of the theoretical estimations. All these factors are controlled by the chelating fragments of the ligands. It is demonstrated that our theoretical approach based on the consideration of the coordinating bonds allows to separate active ligands (inhibitors) from inactive ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pace P, Di Francesco ME, Gardelli C, Harper S, Muraglia E, Nizi E, Orvieto F, Petrocchi A, Poma M, Rowley M, Scarpelli R, Laufer R, Gonzalez Paz O, Monteagudo E, Bonelli F, Hazuda D, Stillmock KA, Summa V (2007) J Med Chem 50:2225–2239

    Article  CAS  Google Scholar 

  2. Pommier Y, Johnson AA, Marchand C (2005) Nat Rev Drug Discov 4:236–248

    Article  CAS  Google Scholar 

  3. Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P (2010) Nature 464:232–236

    Article  CAS  Google Scholar 

  4. Jiao D, King C, Grossfield A, Darden TA, Ren P (2006) J Phys Chem B 110:18553–18559

    Article  CAS  Google Scholar 

  5. Ponder JW, Wu C, Ren P, Pande VS, Chodera JD, Schnieders MJ, Haque I, Mobley DL, Lambrecht DS, DiStasio RA, Head-Gordon JM, Clark GNI, Johnson ME, Head-Gordon T (2010) J Phys Chem B 114:2549–2564

    Article  CAS  Google Scholar 

  6. Gresh N, Cisneros GA, Darden TA, Piquemal J-P (2007) J Chem Theory Comput 3:1960–1986

    Article  CAS  Google Scholar 

  7. Nunthaboot N, Pianwanit S, Parasuk V, Ebalunode JO, Briggs JM, Kokpol S (2007) Biophys J 93:3613–3626

    Article  CAS  Google Scholar 

  8. Alves CN, Marti S, Castillo R, Andres J, Moliner V, Tunon I, Silla EA (2007) Chem Eur J 13:7715–7724

    Article  CAS  Google Scholar 

  9. Puerta DT, Lewis JA, Cohen SM (2004) J Am Chem Soc 126:8388–8389

    Article  CAS  Google Scholar 

  10. Puerta DT, Cohen SM (2003) Inorg Chem 42:3423–3430

    Article  CAS  Google Scholar 

  11. Vanommeslaeghe K, Loverix S, Geerlingsb P, Tourwe D (2005) Bioorgan Med Chem 13:6070–6082

    Article  CAS  Google Scholar 

  12. Tomasi J, Persico M (1994) Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  13. Liao C, Nicklaus MC (2010) ChemMedChem 5:1053–1066

    Article  CAS  Google Scholar 

  14. Grigor’ev FV, Golovacheva AYu, Romanov AN, Kondakova OA, Sulimov VB (2009) Russ J Phys Chem A 83:565–574

    Article  Google Scholar 

  15. Nikitina E, Sulimov V, Grigoriev F, Kondakova O, Luschekina S (2006) Int J Quantum Chem 106:1943–1963

    Article  CAS  Google Scholar 

  16. Remko M (1997) Mol Phys 91:929–936

    CAS  Google Scholar 

  17. Vallet V, Wahlgren U, Grenthe I (2003) J Am Chem Soc 125:14941–14950

    Article  CAS  Google Scholar 

  18. Henderson LJ (1908) Am J Physiol 21:173–179

    CAS  Google Scholar 

  19. Hasselbalch KA (1917) Biochem Z 78:112–144

    Google Scholar 

  20. http://classic.chem.msu.su/gran/gamess/index.html

  21. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  22. http://parallel.ru/cluster/

  23. http://www.jscc.ru/

  24. http://skif.tsu.ru/

  25. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  26. Leh H, Brodin P, Bischerour J, Deprez E, Tauc P, Brochon JC, LeCam E, Coulaud D, Auclair C, Mouscadet JF (2000) Biochemistry 39:9285–9294

    Article  CAS  Google Scholar 

  27. Rice PA, Baker TA (2001) Nat Struct Biol 8:302–307

    Article  CAS  Google Scholar 

  28. Chiu TK, Davies DR (2006) Front Med Chem 3:3–22

    Google Scholar 

  29. Davies DR, Braam LM, Reznikoff WS, Rayment I (1999) J Biol Chem 274:11904–11913

    Article  CAS  Google Scholar 

  30. Davies DR, Goryshin IY, Reznikoff WS, Rayment I (2000) Science 289:77–85

    Article  CAS  Google Scholar 

  31. Steiniger-White M, Rayment I, Reznikoff WS (2004) Curr Opin Struct Biol 14:50–57

    Article  CAS  Google Scholar 

  32. Ason B, Knauss DJ, Balke AM, Merkel G, Skalka AM, Reznikoff WS (2005) Antimicrob Agents Chemother 49:2035–2043

    Article  CAS  Google Scholar 

  33. Barecca ML, DeLuca L, Iraci N, Chimirri A (2006) J Med Chem 49:3994–3997

    Article  Google Scholar 

  34. Allen FH (2002) Acta Crystallogr Sect B 58:380–388

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (grants no. 08-04-12129-ofi, 09-04-93108CNRS) and Victory Pharmaceutical Ltd, Moscow, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. V. Grigoriev.

Appendices

Appendix A

Let’s consider the Henderson–Hasselbalch equation [17, 18] for the equilibrium of the charged (A) and neutral (AH) states of the molecule:

$$ {\text{pH}} = {\text{p}}K_{\text{a}} + \log \frac{{\left[ {A^{ - } } \right]}}{{\left[ {AH} \right]}}, $$
(6)

The ΔG exp is defined as:

$$ \Updelta G_{\exp } = - {\text{RT}}\,\ln \frac{{[{\text{AP}}]}}{{[{\text{A}}][{\text{P}}]}}, $$
(7)

where [A] = [AH] + [A], [AP] = [AHP] + [AP] (P is the protein). Because only ionized product form the chelate complex with protein, [AHP] ≪ [AP]. So the can rewrite (7) as

$$ \Updelta G_{\exp } = - {\text{RT}}\,\ln \frac{{\left[ {{\text{A}}^{ - } {\text{P}}} \right]}}{{\left( {\left[ {\text{AH}} \right] + \left[ {{\text{A}}^{ - } } \right]} \right)\left[ {\text{P}} \right]}}. $$
(8)

On the other hand,

$$ \Updelta G_{\text{calc}} = - {\text{RT}}\,\ln \frac{{\left[ {{\text{A}}^{ - } {\text{P}}} \right]}}{{\left[ {{\text{A}}^{ - } } \right]\left[ {\text{P}} \right]}}. $$
(9)

From (6):

$$ \left[ {\text{AH}} \right] = \left[ {{\text{A}}^{ - } ]} \right]10^{{({\text{p}}K_{\text{a}} - {\text{pH}})}} , $$
(10)

so

$$ \Updelta G_{\exp } = - {\text{RT}}\,\ln \frac{{\left[ {{\text{A}}^{ - } {\text{P}}} \right]}}{{\left( {1 + 10^{{({\text{p}}K_{\text{a}} - {\text{pH)}}}} } \right)\left[ {{\text{A}}^{ - } } \right]\left[ {\text{P}} \right]}} = \Updelta G_{\text{calc}} + {\text{RT}}\,\ln \left( {1 + 10^{{\left( {{\text{p}}K_{\text{a}} - {\text{pH}}} \right)}} } \right) $$
(11)

Appendix B

The free energy of the formation of the IN–ligand complexes ΔG b is expressed in terms of the molar concentration [I], [L], [LI] of the IN, ligand, and complexes IN–ligand, respectively:

$$ \Updelta G_{\text{b}} = - {\text{RT}}\,\ln \frac{[LI]}{[I][L]} = - {\text{RT}}\,\ln K_{\text{d}} , $$
(12)

where \( K_{\text{d}} = \frac{[{\text LI}]}{[{\text I}][{\text L}]} \) is the equilibrium constant.

Rewrite (12) as

$$ \Updelta G_{\text{b}} = - {\text{RT}}\,\ln \frac{[{\text LI}]}{{\left( {[{\text I}]^{0} - [{\text LI}]} \right)\left( {\left[ {L\left( {\text IC}{_{50} } \right)} \right] - \left[ {\text LI} \right]} \right)}}, $$
(13)

where [I]0 is the total concentration of the IN which is fixed under the experiments with different inhibitors, [L(IC50)] is the total concentration of the inhibitor providing the double decreasing of the IN activity.

It can be shown that the [LI] remains constant for different inhibitors if the total concentration of the substrate [S]0 is fixed in the experiments for the [L(IC50)] determination. Let us consider the total free energy F of the system containing N I, N S, N L, N SI, N LI molecules of the IN, substrate, ligand in unbound state and complexes IN–substrate and IN–ligand, respectively:

$$ F = - {\text{RT}}\,\ln \frac{Z}{{N_{\text{I}} !N_{\text{S}} !N_{\text{L}} !N_{\text{SI}} !N_{\text{LI}} !}}, $$
(14)

where the total partition function Z in the dilute solution limit can be expressed as:

$$ Z = Z_{\text{I}}^{{N_{\text{I}} }} Z_{\text{S}}^{{N_{\text{S}} }} Z_{\text{L}}^{{N_{\text{L}} }} Z_{\text{SI}}^{{N_{\text{SI}} }} Z_{\text{LI}}^{{N_{\text{LI}} }} Z_{0} , $$
(15)

where Z I is the individual partition function of the IN, other terms in (15) are defined on the similar way, Z 0 is the part of the Z not dependent on N I, N S, N L, N SI, N LI. Since

$$ N_{\text{I}} = N_{\text{I}}^{0} - N_{\text{SI}} - N_{\text{LI}} ;\;N_{\text{S}} = N_{\text{S}}^{0} - N_{{{\text{S}}I}} ;\quad N_{\text{L}} = N_{\text{L}} (IC_{50} ) - N_{\text{LI}} $$
(16)

only two independent variables are in (14): N LI and N SI. The equilibrium condition is:

$$ \frac{\partial F}{{\partial N_{\text{SI}} }} = \frac{\partial F}{{\partial N_{\text{LI}} }} = 0 $$
(17)

Using (1518) and Stirling’s approximation \( \ln \,N! \cong N(\ln \,N - 1) \) for large N, we obtain:

$$ - {\text{RT}}\,\ln Z_{\text{SI}} + {\text{RT}}\,\ln Z_{\text{I}} + {\text{RT}}\,\ln Z_{\text{S}} + {\text{RT}}\,\ln N_{\text{SI}} - {\text{RT}}\,\ln N_{\text{I}} - {\text{RT}}\,\ln N_{\text{S}} = 0, $$
(18)

and

$$ - {\text{RT}}\,\ln \frac{{Z_{\text{SI}} VN_{\text{A}} }}{{Z_{\text{S}} Z_{\text{I}} }} = - {\text{RT}}\,\ln \frac{{[{\text{SI}}]}}{{[{\text{S}}][{\text{I}}]}}, $$
(19)

where V, N A is the total volume of the system and Avogadro number, respectively. Using (16) rewrite (19) as

$$ - {\text{RT}}\,\ln \frac{{Z_{\text{SI}} VN_{\text{A}} }}{{Z_{\text{S}} Z_{\text{I}} }} = - {\text{RT}}\,\ln \frac{{[{\text{SI}}]}}{{\left( {[{\text{S}}]^{0} - [{\text{SI}}]} \right)\left( {[{\text{I}}]^{0} - [{\text{LI}}] - [{\text{SI}}]} \right)}} $$
(20)

On the similar way, we can obtain for the system without ligands with same numbers of the molecules of the IN and substrate:

$$ - {\text{RT}}\,\ln \frac{{Z_{\text{SI}} VN_{\text{A}} }}{{Z_{\text{S}} Z_{\text{I}} }} = - {\text{RT}}\,\ln \frac{{[{\text{SI}}]_{\text{pure}} }}{{\left( {[{\text{S}}]^{0} - [{\text{SI}}]_{\text{pure}} } \right)\left( {[{\text{I}}]^{0} - [{\text{SI}}]_{\text{pure}} } \right)}} $$
(21)

Since, the left parts of (20) and (21) are equal, we obtain:

$$ \frac{{[{\text{SI}}]}}{{\left( {[{\text{S}}]^{0} - [{\text{SI}}]} \right)\left( {[{\text{I}}]^{0} - [{\text{LI}}] - [{\text{SI}}]} \right)}} = \frac{{[{\text{SI}}]_{\text{pure}} }}{{\left( {[{\text{S}}]^{0} - [{\text{SI}}]_{\text{pure}} } \right)\left( {[{\text{I}}]^{0} - [{\text{SI}}]_{\text{pure}} } \right)}} $$
(22)

Since the [L(IC50)] provides the double decreasing of IN activity, \( [{\text{SI}}] = \frac{{[{\text{SI}}]_{\text{pure}} }}{2} \) and the [LI] in (22) depends only on [S]0, [I]0, [SI].

So using (13) we can write for two different ligands L1, L2:

$$ \Updelta G_{\text{b1}} - \Updelta G_{\text{b2}} = - {\text{RT}}\,\ln \frac{{\left[ {L_{2} \left( {{\text{IC}}_{ 5 0} } \right)} \right] - \left[ {\text LI} \right]}}{{\left[ {L_{1} \left( {{\text{IC}}_{ 5 0} } \right)} \right] - \left[ {\text LI} \right]}} $$
(23)

In (23), we take into account that values of [LI], [I]0 do not depend on ligand. Under the condition [L2(IC50)], [L1(IC50)] ≫ [LI] (23) can be rewritten as:

$$ \Updelta G_{\text{b1}} - \Updelta G_{\text{b2}} \cong - {\text{RT}}\,\ln \frac{{\left[ {L_{2} \left( {{\text{IC}}_{ 5 0} } \right)} \right]}}{{\left[ {L_{1} \left( {{\text{IC}}_{ 5 0} } \right)} \right]}} $$
(24)

The expression (24) is used in this work for the comparison of the experimental and calculated relative stability of the IN–ligand complexes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigoriev, F.V., Golovacheva, A.Y., Romanov, A.N. et al. Stability of HIV-1 integrase–ligand complexes: the role of coordinating bonds. Struct Chem 23, 185–195 (2012). https://doi.org/10.1007/s11224-011-9855-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9855-3

Keywords

Navigation