Skip to main content
Log in

Protein–ligand interaction of T. cruzi trans-sialidase inhibitors: a docking and QM/MM MD study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The trans-Sialidase from Trypanosoma cruzi (TcTS) might be a key enzyme in search of new and more effective anti-Trypanosoma cruzi agents. In this report, molecular docking and quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations were employed to determine the binding mode of the three TcTS inhibitors, two quinolinones derivatives (DHQ and THQ) and DANA. The results show that the sulfone group from THQ plays an important role in the protein-inhibitor interactions. In addition, a detailed analysis of the interactions of these inhibitors with key residues inside the binding pocket of TcTS has been carried out using AM1/MM. The residues Asp59, Asp247, Arg35, Arg245, and Arg314 are appointed as key residues to affinity energy of the complexes studied. Finally, the B3LYP/MM and AM1/MM methods were used to calculate global interaction energy, in order to understand the potential of these inhibitors. Among the inhibitors studied, THQ is confirmed as the most efficient one for inhibiting TcTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Neres J, Bryce RA, Douglas KT (2008) Drug Discov Today 13:110–117

    Article  CAS  Google Scholar 

  2. Cerecetto H, Gonzalez M (2002) Curr Top Med Chem 2:1187–1213

    Article  CAS  Google Scholar 

  3. Buschiazzo A, Amaya MF, Cremona ML, Frasch AC, Alzari PM (2002) Mol Cell 10:757–768

    Article  CAS  Google Scholar 

  4. Amaya MF, Watts AG, Damager I, Wehenkel A, Nguyen T, Buschiazzo A, Paris G, Frasch AC, Withers SG, Alzari PM (2004) Structure 12:775–784

    Article  CAS  Google Scholar 

  5. Buchini S, Buschiazzo A, Withers SG (2008) Angew Chem Int Ed Engl 47:2700–2703

    Article  CAS  Google Scholar 

  6. Frasch AC (2000) Parasitol Today 16:282–286

    Article  CAS  Google Scholar 

  7. Schenkman S, Jiang MS, Hart GW, Nussenzweig V (1991) Cell 65:1117–1125

    Article  CAS  Google Scholar 

  8. Schenkman S, Ferguson MA, Heise N, de Almeida ML, Mortara RA, Yoshida N (1993) Mol Biochem Parasitol 59:293–304

    Article  CAS  Google Scholar 

  9. Tomlinson S, Pontes de Carvalho LC, Vandekerckhove F, Nussenzweig V (1994) J Immunol 153:3141–3147

    CAS  Google Scholar 

  10. Lopez M, Huynh C, Andrade LO, Pypaert M, Andrews NW (2002) Mol Biochem Parasitol 119:141–145

    Article  CAS  Google Scholar 

  11. Neres J, Brewer M, Ratier L, Botti H, Buschiazzo A, Edwards P, Mortenson P, Charlton M, Alzari P, Frasch AC, Bryce RA, Douglas KT (2009) Bioorg Med Chem Lett 19:589–596

    Article  CAS  Google Scholar 

  12. Kim JH, Ryu HW, Shim JH, Park KH, Withers SG (2009) Chem Bio Chem 10:2475–2479

    CAS  Google Scholar 

  13. Xu C, Yang L, Bhandari A, Holmes CP (2006) Tetrahedron Lett 47:4885–4888

    Article  CAS  Google Scholar 

  14. Paris G, Ratier L, Amaya MF, Nguyen T, Alzari PM, Frasch AC (2005) J Mol Biol 345:923–934

    Article  CAS  Google Scholar 

  15. Cole JC, Nissink JWM, Taylor R (2005) In: Shoichet B, Alvarez J (eds) Virtual Screening in Drug Discovery. Taylor & Francis CRC Press, Florida, USA

    Google Scholar 

  16. Trott O, Olson AJ (2010) J Comput Chem 31:455–461

    CAS  Google Scholar 

  17. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  18. Warshel A, Levitt M (1976) J Mol Biol 103:227–249

    Article  CAS  Google Scholar 

  19. Alves CN, Martí S, Castillo R, Andrés J, Moliner V, Tuñón I, Silla E (2007) Chem Eur J 13:7715–7724

    Article  CAS  Google Scholar 

  20. Lameira J, Alves CN, Kanaan N, Moliner V, Tuñón I, Martí S (2008) J Phys Chem B 112:14260–14266

    Article  CAS  Google Scholar 

  21. Menikarachchi LC, Gascón JÁ (2010) Curr Top Med Chem 10:46–54

    Article  CAS  Google Scholar 

  22. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  23. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  24. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  25. Field MJ, Albe M, Bret C, Proust-De Martin F, Thomas A (2000) J Comput Chem 21:1088–1100

    Article  CAS  Google Scholar 

  26. Bas DC, Rogers DM, Jensen JH (2008) Proteins 73:765–783

    Article  CAS  Google Scholar 

  27. Byrd RH, Lu P, Nocedal J, Zhu C (1995) J Sci Comp 16:1190–1208

    Google Scholar 

  28. Lameira J, Alves CN, Moliner V, Martí S, Castillo R, Tuñón I (2010) J Phys Chem B 114:7029–7036

    Article  CAS  Google Scholar 

  29. Khandelwal A, Lukacova V, Comez D, Kroll DM, Raha S, Balaz S (2005) J Med Chem 48:5437–5447

    Article  CAS  Google Scholar 

  30. Fong P, McNamara JP, Hillier IH, Bryce RA (2009) J Chem Inf Model 49:913–924

    Article  CAS  Google Scholar 

  31. Gräter F, Schwarzl SM, Dejaegere A, Fischer S, Smith JC (2005) J Phys Chem B 109:10474–10483

    Article  Google Scholar 

  32. Burger SK, Thompson DC, Ayers PW (2011) J Chem Inf Model 51:93–101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) and Pró-Reitoria de Pesquisa e Pós-Graduação of Universidade Federal do Pará (PROPESP-UFPA) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerônimo Lameira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, A.H., Lameira, J. & Alves, C.N. Protein–ligand interaction of T. cruzi trans-sialidase inhibitors: a docking and QM/MM MD study. Struct Chem 23, 147–152 (2012). https://doi.org/10.1007/s11224-011-9854-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9854-4

Keywords

Navigation