Skip to main content

Advertisement

Log in

A curious conformational property of 2-amino-4-thiazolyl-methoxyimino polymers exhibiting activity against HIV-1 reverse transcriptase

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The polymer formed from degradation of third-generation cephalosporin antibacterials is an inhibitor of HIV-1 reverse transcriptase. The polymer has a (Z)-2-(methoxyimino)-N-(2-iminoethyl)acetamide backbone linking thiazolyl rings. We used molecular modeling to investigate the three-dimensional structure of the polymer. Oligomers were constructed by a Scheraga-type buildup procedure. Energy minimization calculations were performed by molecular mechanics using the MMFF force field. Helical conformations are formed by the polymer. The implications of this discovery are discussed in relation to biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zeng M, Smith AJ, Wietgrefe SW, Southern PJ, Schacker TW, Reilly CS, Estes JD, Burton GF, Silvestri G, Lifson JD, Carlis JV, Haase AT (2011) Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J Clin Invest 121:998–1008

    Article  CAS  Google Scholar 

  2. AIDS epidemic update (2009) World Health Organization: UNAIDS, Joint United Nations Programme on HIV/AIDS, Geneva, Switzerland. www.unaids.org/en/media/unaids/contentassets/dataimport/pub/report/2009/jc1700_epi_update_2009_en.pdf

  3. Pneumocystis pneumonia—Los Angeles (1981) Morbidity and Mortality Weekly Report, CDC: Centers for Disease Control and Prevention 30:250–252

  4. Thayer A (2008) New antiretrovirals: in recent years, new drugs have brought better options for controlling HIV. Chem Eng News 86:29–36, Sept 28

    Google Scholar 

  5. Introduction to HIV and AIDS. www.avert.org/treatment.htm

  6. Retroviral reproduction. ARIC’s On-Line AIDS Medical Glossary. www.critpath.org/aric/gloss/body/retroviral_reproduction.htm

  7. Tu X, Das K, Han Q, Bauman JD, Clark AD Jr, Hou X, Frenkel YV, Gaffney BL, Jones RA, Boyer PL, Hughes SH, Sarafianos SG, Arnold E (2010) Structural basis of HIV-1 resistance to AZT by excision. Nat Struct Mol Biol 17:1202–1209

    Article  CAS  Google Scholar 

  8. De Clercq E (2000) Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Med Res Rev 20:323–349

    Article  Google Scholar 

  9. De Clercq E (2002) Strategies in the design of antiviral drugs. Nat Rev Drug Discovery 1:13–25

    Article  Google Scholar 

  10. De Clercq E (2004) Antivirals and antiviral strategies. Nat Rev Microbiol 2:704–720

    Article  Google Scholar 

  11. De Clercq E (2005) New approaches toward anti-HIV chemotherapy. J Med Chem 48:1297–1313

    Article  Google Scholar 

  12. De Clercq E (2010) Highlights in the discovery of antiviral drugs: a personal retrospective. J Med Chem 53:1438–1450

    Article  Google Scholar 

  13. Das J, Chen P, Norris D, Padmanabha R, Lin J, Moquin RV, Shen Z, Cook LS, Doweyko AM, Pitt S, Pang S, Shen DR, Fang Q, de Fex HF, McIntyre KW, Shuster DJ, Gillooly KM, Behnia K, Schieven GL, Wityak J, Barrish JC (2006) 2-Aminothiazole as a novel kinase inhibitor template. Structure-activity relationship studies toward the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1-piperazinyl)]-2-methyl-4-pyrimidinyl]amino)]-1,3-thiazole-5-carboxamide (Dasatinib, BMS-354825) as a potent pan-Src kinase inhibitor. J Med Chem 49:6819–6832

    Article  CAS  Google Scholar 

  14. Zhang WT, Ruan JL, Wu PF, Jiang FC, Zhang LN, Fang W, Chen XL, Wang Y, Cao BS, Chen GY, Zhu YJ, Gu J, Chen JG (2009) Design, synthesis, and cytoprotective effect of 2-aminothiazole analogues as potent poly(ADP-ribose) polymerase-1 inhibitors. J Med Chem 52:718–725

    Article  CAS  Google Scholar 

  15. Gallardo-Godoy A, Gever J, Fife KL, Silber BM, Prusiner SB, Renslo AR (2011) 2-Aminothiazoles as therapeutic leads for prion diseases. J Med Chem 54:1010–1021

    Article  CAS  Google Scholar 

  16. Neftel KA, Hübscher U (1987) Effects of ß-lactam antibiotics on proliferating eucaryotic cells. Antimicrob Agents Chemother 31:1657–1661

    CAS  Google Scholar 

  17. Hafkemeyer P, Neftel KA, Hübscher U (1990) HIV-reverse transcriptase and human DNA polymerase alpha share amino acid sequence homologies to bacterial penicillin-binding proteins. Methods Find Exp Clin Pharmacol 12:43–46

    CAS  Google Scholar 

  18. Neftel KA, Hafkemeyer P, Cottagnoud P, Eich G, Hübscher U (1993) Did evolutionary forerunners of betalactam-antibiotics bind to nucleic acid replication enzymes? In: Kleinkauf H, von Dohren H (eds) 50 years of penicillin application: history and trends. Public Ltd, Prague, pp 394–403

    Google Scholar 

  19. Neftel KA, Hübscher UAO, Cottagnoud P, Hafkemeyer P, Hobi R, Lutz H, Pfaltz A, Zinkernagel RM (1990) Cephalosporin hydrolysis products as virucides. Swiss Patent CH675878, Nov 15

  20. Hafkemeyer P, Neftel K, Hobi R, Pfaltz A, Lutz H, Luthi K, Focher F, Spadari S, Hubscher U (1991) HP 0.35, a cephalosporin degradation product is a specific inhibitor of lentiviral RNAses H. Nucleic Acids Res 19:4059–4065

    Article  CAS  Google Scholar 

  21. Baertschi SW, Cantrell AS, Kuhfeld MT, Lorenz LJ, Boyd DB, Jaskunas SR (1997) Inhibition of human immunodeficiency virus type 1 reverse transcriptase by degradation products of ceftazidime. Antivir Chem Chemother 8:353–362

    CAS  Google Scholar 

  22. Hobi R, Hübscher U, Neftel K, Alteri E, Poncioni B, Walker MR, Woods-Cook K, Schneider P, Lazdins JK (2001) Anti-HIV-1 activity in vitro of ceftazidime degradation products. Antiviral Chem Chemother 12:109–118

    CAS  Google Scholar 

  23. Schols D, Baba M, Pauwels R, Desmyter J, De Clercq E (1989) Specific interaction of aurintricarboxylic acid with the human immunodeficiency virus/CD4 cell receptor. Proc Natl Acad Sci USA 86:3322–3326

    Article  CAS  Google Scholar 

  24. Moelling K, Schulze T, Diringer H (1989) Inhibition of human immunodeficiency virus type 1 RNase H by sulfated polyanions. J Virol 12:5489–5491

    Google Scholar 

  25. Yahi N, Sabatier J, Nickel P, Mabrouk K, Gonzalez-Scarano F, Fantini J (1994) Suramin inhibits binding of the V3 region of HIV-1 envelope glycoprotein a120 to galactosylceramide, the receptor for HIV-1 gp120 on human colon epithelial cells. J Biol Chem 39:24349–24353

    Google Scholar 

  26. Ahn K, Ou W, Silver J (2004) Inhibition of certain strains of HIV-1 by cell surface polyanions in the form of cholesterol-labeled oligonucleotides. Virology 330:50–61

    Article  CAS  Google Scholar 

  27. Manetti F, Tintori C, Armand-Ugon M, Clotet-Codina I, Massa S, Ragno R, Este J, Botta MA (2006) Combination of molecular dynamics and docking calculations to explore the binding mode of ADS-J1, a polyanionic compound endowed with anti-HIV-1 activity. J Chem Inf Model 46:1344–1351

    Article  CAS  Google Scholar 

  28. Ercanli T, Boyd DB (2006) Exploration of the conformational space of a polymeric material that inhibits human immunodeficiency virus. J Chem Inf Model 46:1321–1333

    Article  CAS  Google Scholar 

  29. Pincus M, Klausner R, Scheraga HA (1982) Calculation of the three-dimensional structure of the membrane bound portion of melittin from its amino acid sequence. Proc Natl Acad Sci USA 79:5107–5110

    Article  CAS  Google Scholar 

  30. Scheraga HA (1983) Recent progress in the theoretical treatment of protein folding. Biopolymers 22:1–14

    Article  CAS  Google Scholar 

  31. Scheraga HA (1992) Predicting three-dimensional structure of oligopeptides. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 3. VCH, New York, pp 73–142

    Chapter  Google Scholar 

  32. Hingerty BE, Figueroa S, Hayden TL, Broyde S (1989) Prediction of DNA structure from sequence: a buildup technique. Biopolymers 28:1195–1222

    Article  CAS  Google Scholar 

  33. Spartan’04 Windows: Tutorial and User’s Guide (2003) Wavefunction, Inc., Irvine, CA 92612, www.wavefun.com

  34. Boyd DB, Lipkowitz KB (1982) Molecular mechanics. The method and its underlying philosophy. J Chem Educ 59:269–274

    Article  CAS  Google Scholar 

  35. Halgren TA (1992) The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters. J Am Chem Soc 114:7827–7843

    Article  CAS  Google Scholar 

  36. Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization and performance of MMFF94. J Comput Chem 17:490–519

    Article  CAS  Google Scholar 

  37. Halgren TA (1996) Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J Comput Chem 17:520–552

    Article  CAS  Google Scholar 

  38. Halgren TA (1996) Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J Comput Chem 17:553–586

    Article  CAS  Google Scholar 

  39. Halgren TA, Nachbar RB (1996) Merck molecular force field. IV. Conformational energies and geometries. J Comput Chem 17:587–615

    CAS  Google Scholar 

  40. Halgren TA (1996) Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data and empirical rules. J Comput Chem 17:616–641

    Article  CAS  Google Scholar 

  41. Ercanli T, Boyd DB (2005) Evaluation of computational chemistry methods: crystallographic and cheminformatics analysis of aminothiazole methoximes. J Chem Inf Model 45:591–601

    Article  CAS  Google Scholar 

  42. Pitzer RM (1983) The barrier to internal rotation in ethane. Acc Chem Res 16:207–210

    Article  CAS  Google Scholar 

  43. Wiberg KB (2000) Origin of the amide rotation barrier. In: Greenburg A, Breneman CM, Liebman JF (eds) The amide linkage: structural significance in chemistry, biochemistry, and material science. Wiley-Interscience, New York, pp 33–45

    Google Scholar 

  44. Nunn CM, Neidle S (1995) Sequence-dependent drug binding to the minor groove of DNA: crystal structure of the DNA dodecamer d(CGCAAATTTGCG)2 complexed with propamidine. J Med Chem 38:2317–2325

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kelsey Forsythe for managing our departmental hardware and software infrastructure. We also thank the anonymous referees for very helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald B. Boyd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kill, K.A., Smith, A.C., Mizdalo, T. et al. A curious conformational property of 2-amino-4-thiazolyl-methoxyimino polymers exhibiting activity against HIV-1 reverse transcriptase. Struct Chem 23, 137–145 (2012). https://doi.org/10.1007/s11224-011-9853-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9853-5

Keywords

Navigation