Skip to main content

Considerations for Structure-Based Drug Design Targeting HIV-1 Reverse Transcriptase

  • Conference paper
  • First Online:
Multifaceted Roles of Crystallography in Modern Drug Discovery

Abstract

HIV-1 reverse transcriptase (RT) copies the viral single-stranded RNA genome into a double-stranded DNA version, and is a central target for anti-AIDS therapeutics. Eight nucleoside/nucleotide analogs (NRTIs) and five non-nucleoside inhibitors (NNRTIs) are approved HIV-1 drugs. Structures of RT have been determined in complexes with substrates and/or inhibitors, and the structures have revealed different conformational and functional states of the enzyme. Rilpivirine and etravirine, two NNRTI drugs with high potency against common resistant variants, were discovered and developed through a multidisciplinary structure-based drug design effort. The resilience of rilpivirine and etravirine to resistance mutations results from the structural flexibility and compactness of these drugs. Recent insights into mechanisms of inhibition by the allosteric NNRTIs include (i) dynamic sliding of RT/NNRTI complexes along template-primers and (ii) displacement of the RT primer grip that repositions the 3′-primer terminus away from the polymerase active site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barre-Sinoussi F et al (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868–871

    Article  CAS  PubMed  Google Scholar 

  2. Gallo RC et al (1984) Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science 224:500–503

    Article  CAS  PubMed  Google Scholar 

  3. Mitsuya H et al (1985) 3′-Azido-3′-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc Natl Acad Sci U S A 82:7096–7100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Fischl MA et al (1987) The efficacy of azidothymidine (AZT) in the treatment of patients with AIDS and AIDS-related complex. A double-blind, placebo-controlled trial. N Engl J Med 317:185–191

    Article  CAS  PubMed  Google Scholar 

  5. Grobler JA et al (2002) Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. Proc Natl Acad Sci U S A 99:6661–6666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Hare S et al (2010) Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc Natl Acad Sci U S A 107:20057–20062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA (1992) Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256:1783–1790

    Article  CAS  PubMed  Google Scholar 

  8. Jacobo-Molina A et al (1993) Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 Å resolution shows bent DNA. Proc Natl Acad Sci U S A 90:6320–6324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Nikolenko GN et al (2005) Mechanism for nucleoside analog-mediated abrogation of HIV-1 replication: balance between RNase H activity and nucleotide excision. Proc Natl Acad Sci U S A 102:2093–2098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Yap SH et al (2007) N348I in the connection domain of HIV-1 reverse transcriptase confers zidovudine and nevirapine resistance. PLoS Med 4:e335

    Article  PubMed Central  PubMed  Google Scholar 

  11. Meyer PR, Matsuura SE, So AG, Scott WA (1998) Unblocking of chain-terminated primer by HIV-1 reverse transcriptase through a nucleotide-dependent mechanism. Proc Natl Acad Sci U S A 95:13471–13476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Arion D, Kaushik N, McCormick S, Borkow G, Parniak MA (1998) Phenotypic mechanism of HIV-1 resistance to 3′-azido-3′-deoxythymidine (AZT): increased polymerization processivity and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry 37:15908–15917

    Article  CAS  PubMed  Google Scholar 

  13. Ding J et al (1995) Structure of HIV-1 RT/TIBO R 86183 complex reveals similarity in the binding of diverse nonnucleoside inhibitors. Nat Struct Biol 2:407–415

    Article  CAS  PubMed  Google Scholar 

  14. Das K et al (2004) Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (Etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. J Med Chem 47:2550–2560

    Article  CAS  PubMed  Google Scholar 

  15. Janssen PA et al (2005) In search of a novel anti-HIV drug: multidisciplinary coordination in the discovery of 4-[[4-[[4-[(1E)-2-cyanoethenyl]-2,6-dimethylphenyl]amino]-2- pyrimidinyl]amino]benzonitrile (R278474, rilpivirine). J Med Chem 48:1901–1909

    Article  CAS  PubMed  Google Scholar 

  16. de Bethune MP (2010) Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: a review of the last 20 years (1989–2009). Antiviral Res 85:75–90

    Article  PubMed  Google Scholar 

  17. Das K et al (2008) High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes: strategic flexibility explains potency against resistance mutations. Proc Natl Acad Sci U S A 105:1466–1471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Chong P et al (2012) Rational design of potent non-nucleoside inhibitors of HIV-1 reverse transcriptase. J Med Chem 55:10601–10609

    Article  CAS  PubMed  Google Scholar 

  19. Kuroda DG et al (2013) Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase. Nat Chem 5:174–181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Frenkel YV et al (2005) Concentration and pH dependent aggregation of hydrophobic drug molecules and relevance to oral bioavailability. J Med Chem 48:1974–1983

    Article  CAS  PubMed  Google Scholar 

  21. Spence RA, Kati WM, Anderson KS, Johnson KA (1995) Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors. Science 267:988–993

    Article  CAS  PubMed  Google Scholar 

  22. Rittinger K, Divita G, Goody RS (1995) Human immunodeficiency virus reverse transcriptase substrate-induced conformational changes and the mechanism of inhibition by nonnucleoside inhibitors. Proc Natl Acad Sci U S A 92:8046–8049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Abbondanzieri EA et al (2008) Dynamic binding orientations direct activity of HIV reverse transcriptase. Nature 453:184–189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Liu S, Abbondanzieri EA, Rausch JW, Le Grice SF, Zhuang X (2008) Slide into action: dynamic shuttling of HIV reverse transcriptase on nucleic acid substrates. Science 322:1092–1097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Ren J et al (1995) High-resolution structures of HIV-1 RT from four RT-inhibitor complexes. Nat Struct Biol 2:293–302

    Article  CAS  PubMed  Google Scholar 

  26. Xia Q, Radzio J, Anderson KS, Sluis-Cremer N (2007) Probing nonnucleoside inhibitor-induced active-site distortion in HIV-1 reverse transcriptase by transient kinetic analyses. Protein Sci 16:1728–1737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Das K et al (1996) Crystal structures of 8-Cl and 9-Cl TIBO complexed with wild-type HIV-1 RT and 8-Cl TIBO complexed with the Tyr181Cys HIV-1 RT drug-resistant mutant. J Mol Biol 264:1085–1100

    Article  CAS  PubMed  Google Scholar 

  28. Das K, Martinez SE, Bauman JD, Arnold E (2012) HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism. Nat Struct Mol Biol 19:253–259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Bec G et al (2013) Thermodynamics of HIV-1 reverse transcriptase in action elucidates the mechanism of action of non-nucleoside inhibitors. J Am Chem Soc 135:9743–9752

    Article  CAS  PubMed  Google Scholar 

  30. Das K et al (2007) Crystal structures of clinically relevant Lys103Asn/Tyr181Cys double mutant HIV-1 reverse transcriptase in complexes with ATP and non-nucleoside inhibitor HBY 097. J Mol Biol 365:77–89

    Article  CAS  PubMed  Google Scholar 

  31. Das K, Arnold E (2013) HIV-1 reverse transcriptase and antiviral drug resistance. Part 1. Curr Opin Virol 3:111–118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Das K, Arnold E (2013) HIV-1 reverse transcriptase and antiviral drug resistance. Part 2. Curr Opin Virol 3:119–128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

EA is grateful to the National Institutes of Health for support from grants R37 AI027690 (MERIT Award) and P50 GM103368. We also thank our collaborators in RT studies, both past and present.

Future Reading

The reader may refer to the two reviews by Das and Arnold [31, 32] for further information. Much of the material and illustrations herein is reproduced from these two recent publications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eddy Arnold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Arnold, E., Martinez, S.E., Bauman, J.D., Das, K. (2015). Considerations for Structure-Based Drug Design Targeting HIV-1 Reverse Transcriptase. In: Scapin, G., Patel, D., Arnold, E. (eds) Multifaceted Roles of Crystallography in Modern Drug Discovery. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9719-1_6

Download citation

Publish with us

Policies and ethics