Skip to main content
Log in

Temperature-dependent synthesis, crystal structures, characterizations, and DFT calculations of two new copper(II) complexes with p-fluorobenzoic acid and 2,2′-bipyridine ligands

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Two new copper(II) complexes, [Cu(p-FBA)2(2,2′-bpy)]·(H2O) (1) and [Cu(p-FBA)(2,2′-bpy)2]·(p-FBA)2 (2) {p-FBA = p-fluorobenzoic acid, 2,2′-bpy = 2,2′-bipyridine} have been obtained from an identical starting mixture using temperature as the only independent variable and characterized by X-ray single crystal diffraction as well as with infrared spectroscopy, elemental analysis, and thermogravimetric analysis. The results reveal that 1 has 1D infinite chain structure formed by O–H···O hydrogen bonds, while 2 features a 0D structure. Additionally, there exist C–H···O hydrogen bonds and π–π stacking interactions in 1, forming 2D supramolecular structure. Furthermore, density functional theory (DFT) calculations of the structures, stabilities, orbital energies, composition characteristics of some frontier molecular orbitals and Mulliken charge distributions of the [Cu(p-FBA)2(2,2′-bpy)] of 1 and [Cu(p-FBA)(2,2′-bpy)2]+ cation of 2 were performed by means of Gaussian 03W package and taking B3LYP/lanl2dz basis set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kitagawa S, Kitaura R, Noro SI (2004) Angew Chem Int Ed 43(18):2334–2375

    Article  CAS  Google Scholar 

  2. Vaidhyanathan R, Natarajan S, Rao CNR (2002) Inorg Chem 41(17):4496–4501

    Article  CAS  Google Scholar 

  3. Zaworotko MJ (2000) Angew Chem Int Ed 39(17):3052–3054

    CAS  Google Scholar 

  4. Carlucci L, Ciani G, Proserpio DM (2003) Coord Chem Rev 246(1–2):247–289

    Article  CAS  Google Scholar 

  5. Batten SR, Robson R (1998) Angew Chem Int Ed 37(11):1460–1494

    Article  Google Scholar 

  6. Yam VWW, Lo KKW (1999) Chem Soc Rev 28:323–334

    Article  CAS  Google Scholar 

  7. Ma Y, Chao HY, Wu Y, Lee ST, Yu WY, Che CM (1998) Chem Commun 22:2491–2492

    Article  Google Scholar 

  8. Liu GX, Zhu K, Chen H, Huang RY, Ren XM (2009) Z Anogr Allg Chem 635(1):156–164

    Article  CAS  Google Scholar 

  9. Li D, Wu T, Zhou XP, Zhou R, Huang XC (2005) Angew Chem Int Ed 44(27):4175–4178

    Article  CAS  Google Scholar 

  10. Peng R, Li D, Wu T, Zhou XP, Ng SW (2006) Inorg Chem 45(10):4035–4046

    Article  CAS  Google Scholar 

  11. Zhan SZ, Li D, Zhou XP, Xh Zhou (2006) Inorg Chem 45(23):9163–9165

    Article  CAS  Google Scholar 

  12. Zhou XP, Ni WX, Zhan SZ, Ni J, Li D, Yin YG (2007) Inorg Chem 46(7):2345–2347

    Article  CAS  Google Scholar 

  13. Zhan SS, Zhan SZ, Li M, Peng R, Li D (2007) Inorg Chem 46(11):4365–4367

    Article  Google Scholar 

  14. Ni WX, Li M, Zhou XP, Li Z, Huang XC, Li D (2007) Chem Commun 33:3479–3481

    Article  Google Scholar 

  15. Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K (2000) Nature 404:982–986

    Article  CAS  Google Scholar 

  16. Dybtsev DN, Chun H, Yoon SH, Kim D, Kim K (2000) J Am Chem Soc 126(1):32–33

    Article  Google Scholar 

  17. Ogawa M, Kuroda K (1995) Chem Rev 95(2):399–438

    Article  CAS  Google Scholar 

  18. Zeng MH, Zhang WX, Sun XZ, Chen XM (2005) Angew Chem Int Ed 44(20):3079–3082

    Article  CAS  Google Scholar 

  19. Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O’Keeffe M, Yaghi OM (2001) Acc Chem Res 34(4):319–330

    Article  CAS  Google Scholar 

  20. Evans OR, Lin W (2002) Acc Chem Res 35(7):511–522

    Article  CAS  Google Scholar 

  21. Brammer L (2004) Chem Soc Rev 33:476–489

    Article  CAS  Google Scholar 

  22. Wang YB, Wang ZM, Yan CH, Jin LP (2004) J Mol Struct 692(1–3):177–186

    Article  CAS  Google Scholar 

  23. Suh MP, Shim BY, Yoon TS (1994) Inorg Chem 33(24):5509–5514

    Article  CAS  Google Scholar 

  24. Battistuzzi G, Borsari M, Menabue L, Sola SMM (1996) Inorg Chem 35(14):4239–4247

    Article  CAS  Google Scholar 

  25. Dalgarno SJ, Hardie MJ, Raston CL (2004) Cryst Growth Des 4(2):227–234

    Article  CAS  Google Scholar 

  26. Zhou ZH, Deng YF, Wan HL (2005) Cryst Growth Des 5(3):1109–1117

    Article  CAS  Google Scholar 

  27. Go YB, Wang X, Anokhina EV, Jacobson AJ (2005) Inorg Chem 44(23):8265–8271

    Article  CAS  Google Scholar 

  28. Zheng PQ, Ren YP, Long LS, Huang RB, Zheng LS (2005) Inorg Chem 44(5):1190–1192

    Article  CAS  Google Scholar 

  29. Zhang GQ, Yang GQ, Ma JS (2006) Cryst Growth Des 6(2):375–381

    Article  CAS  Google Scholar 

  30. Lu WG, Jiang L, Feng XL, Lu TB (2006) Cryst Growth Des 6(2):564–571

    Article  CAS  Google Scholar 

  31. Wu ST, Long LS, Huang RB, Zheng LS (2007) Cryst Growth Des 7(9):1746–1752

    Article  CAS  Google Scholar 

  32. Chermette H (1998) Coord Chem Rev 178–180:699–721

    Article  Google Scholar 

  33. Machura B, Wolffl M, Świtlickal A, Kruszynski R, Mroziński J (2010) Struct Chem 24:761–769

    Article  Google Scholar 

  34. Bruker (2005) APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA

    Google Scholar 

  35. Sheldrick GM (2008) Acta Crystallogr A 64:112–122

    Article  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.01. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  37. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  38. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  39. Bondi A (1964) J Phys Chem 68(3):441–451

    Article  CAS  Google Scholar 

  40. Zhao PS, Shao DL, Zhang J, Wei Y, Jian FF (2009) Bull Korean Chem Soc 30(7):1667–1670

    Article  CAS  Google Scholar 

  41. Ji NN, Shi ZQ, Zhao RG, Zheng ZB, Li ZF (2010) Bull Korean Chem Soc 31(4):881–886

    Article  CAS  Google Scholar 

  42. Fleming I (1976) Frontier orbitals and organic chemical reactions. Wiley, London

    Google Scholar 

  43. Liu BY, Liu Z, Han GC, Li YH (2010) J Mol Struct 975(1–3):194–199

    Article  CAS  Google Scholar 

  44. Şükriye G, Namık Ö, Tülay BD, Bahri Ü, Muharrem D, Ömer A (2010) Polyhedron 29(12):2393–2403

    Article  Google Scholar 

  45. Yang HY, Hou HW, Fan YT (2009) Inorg Chim Acta 362(7):2418–2422

    Article  CAS  Google Scholar 

  46. Xia SW, Xu X, Sun YL, Fan YH, Bi CF, Zhang DM, Yang LR (2006) Chin J Struct Chem 25(2):197–203

    CAS  Google Scholar 

  47. Blower PJ, Dilworth JR, Maurer RI, Mullen GD, Reynolds CA, Zheng YF (2001) J Inorg Biochem 85(1):15–22

    Article  CAS  Google Scholar 

  48. Süleymanoğlu N, Ustabaş R, Alpaslan YB, Çoruh U, Karakuş S, Rollas S (2010) Struct Chem 21(2):59–65

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Postgraduate Foundation of Taishan University (project no: Y07-2-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Qiang Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Z.Q., Ji, N.N., Zhao, R.G. et al. Temperature-dependent synthesis, crystal structures, characterizations, and DFT calculations of two new copper(II) complexes with p-fluorobenzoic acid and 2,2′-bipyridine ligands. Struct Chem 22, 225–233 (2011). https://doi.org/10.1007/s11224-010-9712-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-010-9712-9

Keywords

Navigation