Skip to main content
Log in

Copper (II) complexes with novel Schiff-based ligands: synthesis, crystal structure, thermal (TGA–DSC/FT-IR), spectroscopic (FT-IR, UV-Vis) and theoretical studies

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study aimed to synthesize two novel Schiff-base ligands through the condensation between N-(2-aminoethyl)pyrazoles and 2-hydroxy-1-naphthaldehyde, which are: NaphPz ((E)-1-(((2-(1H-pyrazol-1-yl)ethyl)imino)methyl)naphthalen-2-ol)) and NaphDPz ((E)-1-(((2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyl)imino)methyl)naphthalen-2-ol). These novel pyrazole-imines were synthesized, characterized and used as copper (II) ion complexing agents. Different synthetic routes have been adapted to obtain the [Cu(NaphPz)Cl], [Cu(NaphDPz)Cl] and [Cu(NaphPz)2] complexes in the solid state, the first two in the crystalline form and the latter as a powder. The minimum metal–ligand stoichiometry for the three complexes was defined by TGA–DSC thermoanalytical data and by single-crystal X-ray diffraction for the crystalline samples which belong to the P21/n space group. The products of the thermal decomposition of the material were also monitored by TGA–DSC/FT-IR in air and N2 atmospheres in order to suggest how thermal decomposition of the organic portion of the complex occurs. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations compared to experimental results (UV-Vis and FT-IR) show a high degree of correlation. From HOMO/LUMO orbitals, the main major charge distributions, responsible for the absorption bands of the complexes, were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ansari A, Ali A, Asif M, Shamsuzzaman. Review: biologically active pyrazole derivatives. New J Chem. 2017;41:16–41.

    Article  CAS  Google Scholar 

  2. Faria JV, Vegi PF, Miguita AGC, Santos MS, Boechat N, Bernardino AMR. Recently reported biological activities of pyrazole compounds. Bioorg Med Chem. 2017;25:5891–903. https://doi.org/10.1016/j.bmc.2017.09.035.

    Article  CAS  PubMed  Google Scholar 

  3. Khan MF, Alam MM, Akhtar GVW, Akhter M, Shaquiquzzaman M. The therapeutic voyage of pyrazole and its analogs: a review. Eur J Med Chem. 2016;120:170–201. https://doi.org/10.1016/j.ejmech.2016.04.077.

    Article  CAS  PubMed  Google Scholar 

  4. Fustero S, Sánchez-Roselló M, Barrio P, Simón-Fuentes A. From 2000 to mid-2010: a fruitful decade for the synthesis of pyrazoles. Chem Rev. 2011;111:6984–7034.

    Article  CAS  Google Scholar 

  5. Gupta KC, Sutar AK. Catalytic activities of Schiff base transition metal complexes. Coord Chem Rev. 2008;252:1420–50.

    Article  CAS  Google Scholar 

  6. Abu-Dief AM, Mohamed IMA. A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Seuf Univ J Appl Sci. 2015;4:119–33.

    Google Scholar 

  7. Silva F, Marques F, Santos IC, Paulo A, Rodrigues AS, Rueff J, Santos I. Synthesis, characterization and cytotoxic activity of gallium(III) complexes anchored by tridentate pyrazole-based ligands. J Inorg Biochem. 2010;104:523–32. https://doi.org/10.1016/j.jinorgbio.2010.01.003.

    Article  CAS  PubMed  Google Scholar 

  8. Ainooson MK, Guzei IA, Spencer LC, Darkwa J. Pyrazolylimine iron and cobalt, and pyrazolylamine nickel complexes: synthesis and evaluation of nickel complexes as ethylene oligomerization catalysts. Polyhedron. 2013;53:295–303.

    Article  CAS  Google Scholar 

  9. Yankey M, Obuah C, Darkwa J. Phenoxysalicylaldimine-bearing Chromium(III) precatalysts for ethylene polymerization. Macromol Chem Phys. 2014;215:1767–75.

    Article  CAS  Google Scholar 

  10. Gama S, Mendes F, Marques F, Santos ICM, Carvalho MF, Correia I, Pessoa JC, Santos I, Paulo A. Copper(II) complexes with tridentate pyrazole-based ligands: synthesis, characterization, DNA cleavage activity and cytotoxicity. J Inorg Biochem. 2011;105:637–44. https://doi.org/10.1016/j.jinorgbio.2011.01.013.

    Article  CAS  PubMed  Google Scholar 

  11. Hamann JN, Tuczek F. New catalytic model systems of tyrosinase: fine tuning of the reactivity with pyrazole-based N-donor ligands. Chem Commun. 2014;50:2298–300.

    Article  CAS  Google Scholar 

  12. Oliveira CN, Ionashiro M, Graner CAF. Titulacão complexométrica de zinco, cobre e cobalto. Ecl Quim J. 1985;10:7–10.

    Article  Google Scholar 

  13. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, JrJA Montgomery, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16 (B.01). Wallingford, CT: Gaussian Inc.; 2016.

    Google Scholar 

  14. Heyd J, Scuseria G. Efficient hybrid density functional calculations in solids: the HS-Ernzerhof screened Coulomb hybrid functional. J Chem Phys. 2004;121:1187.

    Article  CAS  Google Scholar 

  15. Heyd J, Scuseria GE. Assessment and validation of a screened Coulomb hybrid density functional. J Chem Phys. 2004;120:7274. https://doi.org/10.1063/1.1668634.

    Article  CAS  PubMed  Google Scholar 

  16. Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations - potentials for K to Au including the outermost core orbitals. J Chem Phys. 1985;82:299.

    Article  CAS  Google Scholar 

  17. Dennington R, Keith TA, Millam JM. GaussView (version 6). Shawnee Mission: Semichem Inc; 2019.

    Google Scholar 

  18. Miertuš S, Scrocco E, Tomasi J. Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem Phys. 1981;55:117.

    Article  Google Scholar 

  19. Sheldrick GM. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr Sect A Found Crystallogr. 2015;71:3–8.

    Article  Google Scholar 

  20. Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem. 2015;C71:3–8.

    Article  Google Scholar 

  21. Brandenburg K, Putz H. DIAMOND – a program for the representation of crystal structures version 463, Crystal Impact, Bonn, Germany. 2020. https://www.crystalimpact.com/diamond/references.htm.

  22. Orpen AG, Brammer L, Allen FH, Kennard O, Watson DG, Taylor R. Appendix A: typical interatomic distances in organic compounds and organometallic compounds and coordination complexes of the d- and f-block metals. New Jersey: Wiley; 1994.

    Google Scholar 

  23. Luo YR. Comprehensive handbook of chemical bond energies. 1st ed. FL: CRC Press; 2007.

    Book  Google Scholar 

  24. Yesilkaynak T, Emen FM, Avsar G, Kulcu N. The preparation and characterization of dichlorobispyridinecopper(II) complex and its intermediates. J Therm Anal Calorim. 2015;122:1493–502. https://doi.org/10.1007/s10973-015-4749-z.

    Article  CAS  Google Scholar 

  25. Liu D, Chen Xin, Bian B, Lai Z, Situ Y. Dual-Function Conductive Copper Hollow Fibers for Microfiltration and Anti-biofouling in Electrochemical Membrane Bioreactors. Front Chem. 2018. https://doi.org/10.3389/fchem.2018.00445.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nakamoto K. Infrared and raman spectra of inorganic and coordination compounds: part a: theory and applications in inorganic chemistry. 6th ed. Hoboken: Wiley; 2008.

    Google Scholar 

  27. Pavia DL, Lampman GM, Kriz GS, Vyvyan JA. Introduction to Spectroscopy. 4th ed. Toronto: Nelson Education; 2008.

    Google Scholar 

  28. Yang L, Powell DR, Houser RP. Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index τ4. Dalton Trans. 2007. https://doi.org/10.1039/B617136B.

    Article  PubMed  Google Scholar 

  29. Ma Shu-Lan, Sun Xu-Xia, Song G, Qi Chuan-Min, Huang Hai-Bo, Zhu Wen-Xiang. A new chloro-bridged cuii schiff base complex with ferromagnetic exchange interaction. Eur J Inorg Chem. 2007. https://doi.org/10.1002/ejic.200600890.

    Article  Google Scholar 

  30. Widerski GS, Wisłocka RS, Łyszczek R, Wojtulewski S, Samsonowicz M, Lewandowski W. Thermal, spectroscopic, X-ray and theoretical studies of metal complexes (sodium, manganese, copper, nickel, cobalt and zinc) with pyrimidine-5-carboxylic and pyrimidine-2-carboxylic acids. J Therm Anal Calorim. 2019;138:2813–37. https://doi.org/10.1007/s10973-019-08594-x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Brazilian Foundations CNPq, Fundect, Capes and Finep for financial support, and are grateful to Professor Massao Ionashiro for allowing us to carry out measurements in the Ivo Giolito Thermal Analysis Laboratory (LATIG) – UNESP, and Professional Noemi Marques de Carvalho for English reviewing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudio Teodoro de Carvalho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, J.M., Campos, G.F., de Campos Pinto, L.M. et al. Copper (II) complexes with novel Schiff-based ligands: synthesis, crystal structure, thermal (TGA–DSC/FT-IR), spectroscopic (FT-IR, UV-Vis) and theoretical studies. J Therm Anal Calorim 147, 4087–4098 (2022). https://doi.org/10.1007/s10973-021-10803-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10803-5

Keywords

Navigation