Skip to main content
Log in

The molecular structure of PrI3 and GdI3 as determined by synchronous gas-phase electron diffraction and mass spectrometric experiment assisted by quantum chemical calculations

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A gas electron diffraction study of PrI3 and GdI3 has been carried out in combination with mass spectrometric vapour monitoring at 1110(10) K and 1100(10) K, respectively. Up to 3 mol.% of dimeric species was observed in addition to the dominating monomeric molecules. The change of the thermal-averaged r g configuration parameters of the molecules in the series LaI3 → LuI3 reflects the lanthanide contraction. A low value of the shrinkage δ(I···I) even at such a high temperatures may be considered due to vibration effects in molecule whose equilibrium geometric nuclear structure is planar and which correspond to configurationally averaged 4f n electronic state. B3LYP calculations performed in this study with large core potential for lanthanide atoms also resulted in equilibrium geometry of D 3h symmetry. According to the quantum chemical calculations, the potential function the non-planar vibration is essentially anharmonic, which is therefore to be taken into account to correctly describe nuclear dynamics in molecules such as LnI3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akishin PA, Naumov VA, Tatevskiy VM (1959) Kristallografiya 4:194

    CAS  Google Scholar 

  2. Akishin PA, Naumov VA, Tatevskiy VM (1959) Vestn Mosk Univers ser Mat Mekh Astron Fiz Khim 1:229

    Google Scholar 

  3. Zasorin EZ (1988) Russ J Phys Chem 62:441

    Google Scholar 

  4. Ezhov YuS, Komarov SA, Sevast’yanov VG (2000) Russ J Struct Chem 41:593

    Article  CAS  Google Scholar 

  5. Molnar J, Konings RJM, Kolonits M, Hargittai M (1996) J Mol Struct 375:223

    Article  CAS  Google Scholar 

  6. Giricheva NI, Girichev GV, Smorodin SV (2007) Russ J Struct Chem 48:643

    Google Scholar 

  7. Slykov SA, Giricheva NI, Lapykina EA, Girichev GV, Oberhammer H (2010) J Mol Struct 978:170

    Article  Google Scholar 

  8. Girichev GV, Utkin AN, Revichev YuF (1984) Prib Tekh Eksp 2:187 (in Russian)

    Google Scholar 

  9. Girichev GV, Slykov SA, Revichev YuF (1986) Prib Tekh Eksp 4:167

    Google Scholar 

  10. Girichev EG, Zakharov AV, Girichev GV, Bazanov MI (2000) Izv Vysh Uchebn Zaved Technol Text Prom 2:142 (in Russian)

    Google Scholar 

  11. Andersen B, Seip HM, Strand TG, Stølevik R (1969) Acta Chem Scand 23:3224

    Article  CAS  Google Scholar 

  12. Girichev GV (1989) Russ J Phys Chem LXIII:2273

    Google Scholar 

  13. Sipachev VA (2001) J Mol Struct 567:67

    Article  Google Scholar 

  14. Sipachev VA (1985) J Mol Struct 121:143

    Google Scholar 

  15. Lapykina EA, Giricheva NI (2010) Vestn Ivan Gosud Univers 2:41

    Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 Revision B04. Gaussian Inc, Pittsburgh, PA

    Google Scholar 

  17. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Hea-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98 Revision A3. Gaussian Inc, Pittsburgh, PA

    Google Scholar 

  18. Dolg M, Stoll H, Savin A, Preuss H (1989) Theor Chim Acta 75:173

    Article  CAS  Google Scholar 

  19. Weigand X, Cao J, Yang M, Dolg H (2009) Theor Chem Acc. doi:10.1007/s00214-009-0584-2

  20. Easton RE, Giesen DJ, Welch A, Cramer CJ, Truhlar DG (1996) Theor Chim Acta 93:281

    Article  CAS  Google Scholar 

  21. Giricheva NI, Girichev GV, Smorodin SV (2007) Russ J Struct Chem 48:452

    Google Scholar 

  22. Popenko NI, Zasorin EZ, Spiridonov VP, Ivanov AA (1978) Inorg Chim Acta 31:L371

    Article  CAS  Google Scholar 

  23. Popenko NI, Zasorin EZ, Spiridonov VP, Ivanov AA (1987) VINITI 780:78 (in Russian)

    Google Scholar 

Download references

Acknowledgments

We are grateful for financial support to the Russian–German Cooperation by the Deutsche Forschungsgemeinschaft and Russian Foundation for Basic Research (grants DFG 413 RUS 113/69/0-7 and RFBR 09-03-91341_HHИO_a); EAL thanks Russian Ministry of Education and Science (grant no. П2066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina I. Giricheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giricheva, N.I., Shlykov, S.A., Lapykina, E.A. et al. The molecular structure of PrI3 and GdI3 as determined by synchronous gas-phase electron diffraction and mass spectrometric experiment assisted by quantum chemical calculations. Struct Chem 22, 385–392 (2011). https://doi.org/10.1007/s11224-010-9709-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-010-9709-4

Keywords

Navigation