Skip to main content
Log in

Hydrogen-bonded clusters of hydroperoxyl radical with ammonia: a theoretical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Ab initio calculations at MP2/6-311++G(d,p) computational level were used to analyze the interaction between a molecule of the hydroperoxyl radical with 1 up to 4 molecules of ammonia. Three minima were found for 1:2 and 1:4 complexes of HOO and NH3. Two complexes were located as minima on the potential energy surface of 1:3 complexes. Red shifts of the OH stretching frequency upon complex formation in the range between 560 and 1,116 cm−1 are predicted. Cooperative effect in terms of stabilization energy is calculated for the studied clusters. The cooperative effect is increased with the increasing size of studied clusters. The Quantum Theory Atoms in Molecules (QTAIM) theory was also applied to explain the nature of the complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Muller-Dethlefs K, Hobza P (2000) Chem Rev 100:143

    Article  Google Scholar 

  2. Scheiner S (1997) Hydrogen bondings a theoretical perspective. Oxford University Press, Oxford, and references therein

  3. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer-Verlag, Berlin

    Google Scholar 

  4. Aloisio S, Francisco JS (2000) J Phys Chem A 104:3211

    Article  CAS  Google Scholar 

  5. Aloisio S, Francisco JS (2000) Acc Chem Res 33:825

    Article  CAS  Google Scholar 

  6. Aloisio S, Francisco JS (2000) J Am Chem Soc 122:9196

    Article  CAS  Google Scholar 

  7. Chakraborty D, Park J, Lin MC (1998) Chem Phys 231:39

    Article  CAS  Google Scholar 

  8. DelValle CP, Valdemoro C, Novoa JJ (1996) J Mol Struct (THEOCHEM) 371:143

    Article  Google Scholar 

  9. Aloisio S, Francisco JS (2003) J Phys Chem A 107:2492

    Article  CAS  Google Scholar 

  10. Francisco JS (2000) Angew Chem Int Ed 39:4570

    Article  CAS  Google Scholar 

  11. Miller CE, Francisco JS (2001) J Am Chem Soc 123:10387

    Article  CAS  Google Scholar 

  12. Parreira RLT, Galembeck SE (2003) J Am Chem Soc 125:15614

    Article  CAS  Google Scholar 

  13. Zhou ZY, Qu YH, Gu L, Gao HW, Cheng XL (2002) J Mol Struct (THEOCHEM) 586:149

    Article  CAS  Google Scholar 

  14. Anglada JM (2004) Am Chem Soc 126:9809

    Article  CAS  Google Scholar 

  15. Flowers BA, Szalay PG, Stanton JF, Kallay M, Gauss J, Csaszar AG (2004) J Phys Chem A 108:3195

    Article  CAS  Google Scholar 

  16. Torrrent-Sucarrat M, Anglada JM (2004) Chem Phys Chem 5:183

    Google Scholar 

  17. Wang B, Hou H (2005) Chem Phys Lett 410:235

    Article  CAS  Google Scholar 

  18. Frey PA (1990) Chem Rev 90:1343

    Article  CAS  Google Scholar 

  19. Stubbe J, van der Donk WA (1998) Chem Rev 98:705

    Article  CAS  Google Scholar 

  20. Espinosa-Garcia J (2004) J Am Chem Soc 126:920

    Article  CAS  Google Scholar 

  21. Wayne RP (1991) Chemistry of atmospheres. Clarendon Press, Oxford

  22. Hansen JC, Francisco JS (2002) Chem Phys Chem 3:833

    CAS  Google Scholar 

  23. Aloisio S, Francisco JS (1998) J Phys Chem A 102:1899

    Article  CAS  Google Scholar 

  24. Christensen LE, Okumura M, Hansen JC, Sander SP, Francisco JS (2006) J Phys Chem A 110:6948

    Article  CAS  Google Scholar 

  25. Alikhani ME, Barone V (2004) Chem Phys Lett 391:134

    Article  CAS  Google Scholar 

  26. Aloisio S, Francisco JS (1999) J Phys Chem A 103:6049

    Article  CAS  Google Scholar 

  27. Torrrent-Sucarrat M, Anglada JM (2006) J Phys Chem A 110:9718

    Article  Google Scholar 

  28. Qu Y, Bian X, Tang H, Si P (2005) Int J Quantum Chem 101:381

    Article  CAS  Google Scholar 

  29. Solimannejad M, Shirazi SG, Scheiner S (2007) J Phys Chem A 111:10717

    Article  CAS  Google Scholar 

  30. Solimannejad M, Azimi G, Pejov Lj (2004) Chem Phys Lett 400:185

    Article  CAS  Google Scholar 

  31. Solimannejad M, Azimi G, Pejov Lj (2004) Chem Phys Lett 391:201

    Article  CAS  Google Scholar 

  32. Solimannejad M, Scheiner S (2006) Chem Phys Lett 429:38

    Article  CAS  Google Scholar 

  33. Solimannejad M, Scheiner S (2006) J Phys Chem A 110:5948

    Article  CAS  Google Scholar 

  34. Solimannejad M, Nielsen CJ, Scheiner S (2008) Chem Phys Lett 466:136

    Article  CAS  Google Scholar 

  35. Solimannejad M, Massahi S, Scheiner S (2009) THEOCHEM 913:50

    Article  CAS  Google Scholar 

  36. Bil A, Latajka Z (2005) Chem Phys Lett 406:366

    Article  CAS  Google Scholar 

  37. Qu Y, Bian X, Tang H, Si P (2004) J Mol Struct (THEOCHEM) 671:173

    Article  CAS  Google Scholar 

  38. Bil A, Latajka Z (2006) J Comput Chem 27:287

    Article  CAS  Google Scholar 

  39. Mansergas A, Anglada JM (2007) J Phys Chem A 111:976

    Article  CAS  Google Scholar 

  40. Janeiro-Barral PE, Mella M (2006) J Phys Chem A 110:11244

    Article  CAS  Google Scholar 

  41. Zabardasti A, Amani S, Solimannejad M, Salehnassaj S (2009) Struct Chem 20:1087

    Article  CAS  Google Scholar 

  42. Yu L, Yang ZZ (2010) J Chem Phys 132:174109

    Article  Google Scholar 

  43. Almeida TS, Costa Cabral BJ (2010) J Chem Phys 132:094307

    Article  CAS  Google Scholar 

  44. Solimannejad M, Jamshidi FH, Amani S (2010) THEOCHEM 958:116

    Article  CAS  Google Scholar 

  45. Nelander B (1997) J Phys Chem A 101:9092

    Article  CAS  Google Scholar 

  46. Engdahl A, Nelander B (1999) Chem Phys 249:215

    Article  CAS  Google Scholar 

  47. Bil A, Latajka Z (2004) Chem Phys 303:43

    Article  CAS  Google Scholar 

  48. Bil A, Latajka Z (2004) Chem Phys 305:243

    Article  CAS  Google Scholar 

  49. Qu Y, Bian X, Zhou Z, Gao H (2002) Chem Phys Lett 366:260

    Article  CAS  Google Scholar 

  50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzales C, Pople JA (2003) Gaussian 03 Rev B02. Gaussian Inc, Pittsburgh, PA

    Google Scholar 

  51. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  52. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265

    Article  CAS  Google Scholar 

  53. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  54. Bader RFW (1990) In: Halpen J, Green MLH (eds) Atom in molecules: a quantum theory. The international series of monographs of chemistry. Clarendon Press, Oxford

  55. Biegler-Konig F, Schonbohm J (2002) AIM2000 program package, Ver. 2.0. University of Applied Sciences, Bielefield, Germany

    Google Scholar 

  56. Xantheas SS, Burnham CJ, Harrison RJ (2002) J Chem Phys 116:1493

    Article  CAS  Google Scholar 

  57. Ziolkowski M, Grabowski SJ, Leszczynski J (2006) J Phys Chem A 110:6514

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Solimannejad.

Electronic supplementary material

Below is the link to the electronic supplementary material. Supplementary data Optimized structures and molecular graph of all studied complexes at MP2/6-311++G(d,p) level

Supplementary material 1 (DOC 13270 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solimannejad, M., Jamshidi, F.H. & Amani, S. Hydrogen-bonded clusters of hydroperoxyl radical with ammonia: a theoretical study. Struct Chem 22, 193–199 (2011). https://doi.org/10.1007/s11224-010-9692-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-010-9692-9

Keywords

Navigation