Skip to main content
Log in

Theoretical study and atoms in molecule analysis of hydrogen bonded clusters of ammonia and isocyanic acid

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Ab initio and density functional calculations were used to analyze the interaction between a molecule of the isocyanic acid with 1 up to 4 molecules of ammonia at the B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) computational levels. The cooperative effect is increased with the increasing size of studied clusters. Red shifts of the H–N stretching frequency for complexes involving the isocyanic acid as an H-donor were predicted. Atom in molecules was used to analyze cooperative effects on topological parameters.

Graphical Abstract

Identification of absorption peaks corresponding to NH4 + and OCN ions in interstellar grains makes hydrogen bond formation between HNCO and NH3 molecules more important. In line with this idea, gas phase theoretical studies as well as AIM analysis have been used to investigate the hydrogen bond clusters of HNCO with up to four NH3 molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Muller-Dethlefs K, Hobza P (2000) Chem Rev 100:143

    Article  Google Scholar 

  2. Scheiner S (1997) Hydrogen bonding—a theoretical perspective. Oxford University Press, Oxford, and references therein

  3. Hobza P, Havlas Z (2000) Chem Rev 100:4253

    Article  CAS  Google Scholar 

  4. Solimannejad M, Scheiner S (2006) Chem Phys Lett 424:1

    Article  CAS  Google Scholar 

  5. Solimannejad M, Scheiner S (2006) Chem Phys Lett 429:38

    Article  CAS  Google Scholar 

  6. Arau’jo RCMU, Soares VM, Oliveira BG, Lopes KC, Ventura E, Do Monte SA, Santana OL, Carvalho AB, Ramos MN (2006) Int J Quantum Chem 106:2714

    Article  Google Scholar 

  7. Ziołkowski M, Grabowski SJ, Leszczynski J (2006) J Phys Chem A 110:6514

    Article  Google Scholar 

  8. Zabardasti A, Solimannejad M (2007) J Mol Struct (THEOCHEM) 810:73

    Article  CAS  Google Scholar 

  9. Winnewisser G, Kramer C (1999) Space Sci Rev 90:181

    Article  CAS  Google Scholar 

  10. Lowenthal MS, Khanna RK, Moore MH (2002) Spectrochim Acta A 58:73

    Article  CAS  Google Scholar 

  11. Nguyen MT, Sengupta D, Vereecken L, Peeters J, Vanquickenborne LG (1996) J Phys Chem 100:1615

    Article  CAS  Google Scholar 

  12. Fischer G, Geith J, Klapotke TM, Krumm B (2002) Z Naturforsch 57b:19

    Google Scholar 

  13. Zyrianov M, Droz-Georget T, Sanov A, Reisler H (1996) J Chem Phys 105:8111

    Article  CAS  Google Scholar 

  14. Zabardasti A (2007) Chem Heterocycl Compd 43:1344

    Article  CAS  Google Scholar 

  15. Conroy D, Aristov V, Feng L, Sanov A, Reisler H (2001) Acc Chem Res 34:625

    Article  CAS  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) GAUSSIAN 98 (Revision A.6). Gaussian, Inc., Pittsburgh

  17. Hobza P, Spirko V, Havlas Z, Buchhold K, Reimann B, Barth HD, Brutschy B (1999) Chem Phys Lett 299:180

    Article  CAS  Google Scholar 

  18. Matsuura H, Yoshida H, Hieda M, Yamanaka S, Harada T, Shin-ya K, Ohno K (2003) J Am Chem Soc 125:13910

    Article  CAS  Google Scholar 

  19. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  20. Bader RFW, Biegler-König F, Schönbohm J (2002) AIM2000 program package. Ver. 2.0. University of Applied Sciences, Bielefield, Germany

    Google Scholar 

  21. Xantheas SS, Burnham CJ, Harrison RJ (2002) J Chem Phys 116:1493

    Article  CAS  Google Scholar 

  22. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  23. Zabardasti A, Amani S, Salehnassaj M, Kianfar AH (2008) J Theor Comput Chem 7:277

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abedien Zabardasti.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zabardasti, A., Amani, S., Solimannejad, M. et al. Theoretical study and atoms in molecule analysis of hydrogen bonded clusters of ammonia and isocyanic acid. Struct Chem 20, 1087–1092 (2009). https://doi.org/10.1007/s11224-009-9513-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-009-9513-1

Keywords

Navigation