Skip to main content
Log in

First-principles band gap criterion for impact sensitivity of energetic crystals: a review

  • Review Article
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this article, we review some recent studies in predicting impact sensitivity for different classes of energetic crystals based on first-principles band gap. Based on these investigations on metal azides, a first-principles band gap criterion is founded to measure impact sensitivity for a series of energetic crystals. For energetic crystals with similar structure or with similar thermal decomposition mechanism, the smaller the band gap is, the easier the electron transfers from the valence band to the conduction band, and the more they becomes decomposed and exploded. Applications of this criterion on other series of energetic crystals show that the first-principles band gap criterion is applicable to different series of energetic crystals with similar structure or with similar thermal decomposition mechanism. This criterion may be useful for molecular design of high-energy density materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maček A (1962) Chem Rev 62:41–63

    Article  Google Scholar 

  2. Xiao HM (1993) Molecular orbital theory for nitro compounds. National Defense Industry Press, Beijing

    Google Scholar 

  3. Politzer P, Alper HE (1999) In: J. Leszczynski (Ed.), Computational chemistry: reviews of current trends, vol 4. World Scientific Publishing Company, Singapore, pp 271–286

  4. Politzer P, Murray JS, Seminario JM, Lane P, Grice ME, Concha MC (2001) J Mol Struct (Theochem) 573:1–10

    Article  CAS  Google Scholar 

  5. Xiao J-j, Li J-s (2002) Chin J Energ Mater 10:178–181

    CAS  Google Scholar 

  6. Zeman S (2007) Sensitivities of high energy compounds. Struct Bond 125:195–271

    Article  CAS  Google Scholar 

  7. Keshavarz MH, Shokrolahi A, Esmallpoor K, Zall A, Hafizi HR, Azamiamehraban J (2008) Chin J Energ Mater 16:113–120

    CAS  Google Scholar 

  8. Walley SM, Field JE, Greenaway MW (2006) Mater Sci Technol 22:402–413

    Article  CAS  Google Scholar 

  9. Xiao HM, Xu XJ, Qiu L (2008) Theoretical design of high energy density materials. Science Press, Beijing

    Google Scholar 

  10. Murray JS, Concha MC, Politzer P (2009) Mol Phys 107:89–97

    Article  CAS  Google Scholar 

  11. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2009) J Mol Model. doi: 10.1007/s00894-009-0587-x

  12. Xiao HM, Li YF, Qian JJ (1994) Acta Phys Chim Sin 10:235–240

    CAS  Google Scholar 

  13. Xiao HM, Li YF (1995) Sci Chin B 38:538–545

    CAS  Google Scholar 

  14. Xiao HM, Li YF (1996) Banding and electronic structures of metal azides. Science Press, Beijing

    Google Scholar 

  15. McNesby KL, Coffey CS (1997) J Phys Chem B 101:3097–3104

    Article  CAS  Google Scholar 

  16. Zeman S (2000) Propellants Explos Pyrotech 25:66–74

    Article  CAS  Google Scholar 

  17. Zeman S, Krupka M (2003) Propellants Explos Pyrotech 28:249–255

    Article  CAS  Google Scholar 

  18. Zeman S, Krupka M (2003) Propellants Explos Pyrotech 28:301–307

    Article  CAS  Google Scholar 

  19. Zeman S (2006) J Hazard Mater A 132:155–164

    Article  CAS  Google Scholar 

  20. Ye S, Koshi M (2006) J Phys Chem B 110:18515–18520

    Article  CAS  Google Scholar 

  21. Zhu WH, Xiao HM (2006) J Phys Chem B 110:18196–18203

    Article  CAS  Google Scholar 

  22. Zhu WH, Xiao JJ, Xiao HM (2006) J Phys Chem B 110:9856–9862

    Article  CAS  Google Scholar 

  23. Zhu WH, Xiao JJ, Xiao HM (2006) Chem Phys Lett 422:117–121

    Article  CAS  Google Scholar 

  24. Zhu WH, Xiao HM (2007) J Solid State Chem 180:3521–3528

    Article  CAS  Google Scholar 

  25. Zhu WH, Xu XJ, Xiao HM (2007) J Phys Chem Solids 68:1762–1769

    Article  CAS  Google Scholar 

  26. Zhu WH, Xiao HM (2008) J Comput Chem 29:176–184

    Article  CAS  Google Scholar 

  27. Zhu WH, Zhang XW, Wei T, Xiao HM (2008) Chin J Chem 26:2145–2149

    Article  CAS  Google Scholar 

  28. Zhu WH, Xiao JJ, Ji GF, Zhao F, Xiao HM (2007) J Phys Chem B 111:12715–12722

    Article  CAS  Google Scholar 

  29. Xu XJ, Zhu WH, Xiao HM (2007) J Phys Chem B 111:2090–2097

    Article  CAS  Google Scholar 

  30. Zhu WH, Wei T, Zhu W, Xiao HM (2008) J Phys Chem A 112:4688–4693

    Article  CAS  Google Scholar 

  31. Zhu WH, Zhang XW, Zhu W, Xiao HM (2008) Phys Chem Chem Phys 10:7318–7323

    Article  CAS  Google Scholar 

  32. Zhu WH, Zhang XW, Wei T, Xiao HM (2009) Theor Chem Acc 124:179–186

    Article  CAS  Google Scholar 

  33. Zhu WH, Xiao HM (2009) J Phys Chem B 113:10315–10321

    Article  CAS  Google Scholar 

  34. Zhu WH, Shi CH, Xiao HM (2009) J Mol Struct (Theochem) 910:148–153

    Article  CAS  Google Scholar 

  35. Zhu WH, Zhang XW, Wei T, Xiao HM (2009) J Mol Struct Theochem 900:84–89

    Article  CAS  Google Scholar 

  36. Zhu WH, Wei T, Zhang XW, Xiao HM (2009) J Mol Struct (Theochem) 895:131–137

    Article  CAS  Google Scholar 

  37. Fair HD, Walker RF (1977) Physics and chemistry of the inorganic azides, energetic materials, vol 1. Plenum Press, New York

    Google Scholar 

  38. Urbanski T (1967) Chemistry and technology of explosives, vol 3. Pergamon Press, Oxford

    Google Scholar 

  39. Evans BL, Yoffe AD, Gray P (1959) Chem Rev 59:515–568

    Article  CAS  Google Scholar 

  40. L’vov BV (1997) Thermochim Acta 291:179–185

    Article  Google Scholar 

  41. McDonald JR, Rabalais JW, McGlynm SP (1970) J Chem Phys 52:1332–1340

    Article  CAS  Google Scholar 

  42. Gray P, Waddington TC (1956) Proc Roy Soc A (London) 235:481–495

    Article  CAS  Google Scholar 

  43. Wang D (1961) Explosives. Science and Education Press, Beijing

    Google Scholar 

  44. Бyбнoв ПX, (1958) Initiating explosives, translated by Li ZL, Jiang JX National Defence Industry Press, Beijing

  45. McCrone WC (1965) In: Fox D, Labes MM, Wessberger A (ed) Physics and chemistry of the organic solid state, vol II. Wiley, New York, p 726

  46. Ou Y-x, Wang C, Pan Z-l, Chen B-r (1999) Chin J Energ Mater 7:100–102

    CAS  Google Scholar 

  47. Kamlet MJ, Adolph HG (1979) Propellants Explos 4:30–34

    Article  CAS  Google Scholar 

  48. Storm CB, Stine JR, Kramer JF (1990) In: Bulusu S (ed) Chemistry and physics of energetic materials. Kluwer Academic Publisher, Dordrecht, The Netherlands

    Google Scholar 

  49. Birckenbach L, Roerig W (1925) Festschrift Bergakad. Clausthal Press, Berlin, p 123

    Google Scholar 

  50. Kuklja MM, Kunz AB (1999) J Appl Phys 86:4428–4434

    Article  CAS  Google Scholar 

  51. Kuklja MM, Kunz AB (2000) J Appl Phys 87:2215–2218

    Article  CAS  Google Scholar 

  52. Kuklja MM, Aduev BP, Aluker ED, Krasheninin VI, Krechetov AG, Mitrofanov AY (2001) J Appl Phys 89:4156–4166

    Article  CAS  Google Scholar 

  53. Kuklja MM, Stefanovich EV, Kunz AB (2000) J Chem Phys 112:3417–3423

    Article  CAS  Google Scholar 

  54. Younk EH, Kunz AB (1997) Int J Quantum Chem 63:615–621

    Article  CAS  Google Scholar 

  55. Reed EJ, Joannopoulos JD, Fried LE (2000) Phys Rev B 62:16500–16509

    Article  CAS  Google Scholar 

  56. Liu H, Zhao J, Wei D, Gong Z (2006) J Chem Phys 124:124501

    Article  Google Scholar 

  57. Zerilli FJ, Hooper JP, Kuklja MM (2007) J Chem Phys 126:114701

    Article  Google Scholar 

  58. Margetis D, Kaxiras E, Elstner M, Frauenheim Th, Manaa MR (2002) J Chem Phys 117:788–799

    Article  CAS  Google Scholar 

  59. Conroy MW, Oleynik II, Zybin SV, White CT (2008) Phys Rev B 77:094107

    Article  Google Scholar 

  60. Liu H, Zhao J (2008) Comput Mater Sci 42:698–703

    Article  Google Scholar 

  61. Wu CJ, Yang LH, Fried LE (2003) Phys Rev B 67:235101

    Article  Google Scholar 

  62. Liu H, Zhao J, Du J, Gong Z, Ji G, Wei D (2007) Phys Lett A 367:383–388

    Article  CAS  Google Scholar 

  63. Lin D, Lu L-Y, Wei D-Q, Zhang Q-M, Gong Z-Z, Guo Y-X (2008) Chin Phys Lett 25:899–902

    Article  Google Scholar 

  64. Conroy MW, Oleynik II, Zybin SV, White CT (2008) J Appl Phys 104:053506

    Article  Google Scholar 

  65. Qiu L, Xiao H-M, Zhu W-H, Xiao J-J, Zhu W (2006) J Phys Chem B 110:10651–10661

    Article  CAS  Google Scholar 

  66. Qiu L, Zhu W-H, Xiao J-J, Xiao H-M (2008) J Phys Chem B 112:3882–3893

    Article  CAS  Google Scholar 

  67. Botcher TR, Landouceur HD, Russel TR (1998) In: Schmidt SC, Dandekar DP, Forbes JW (ed) Shock compression of condensed matter—1997, Proceedings of the APS Topical Group, AIP, Woodbury, New York

  68. Klimenko VY, Dremin AN (1980) On kinetics of decomposition in the front of shock wave. Proc. 6th All-Union Symp Combust Explos, Alma Ata, USSR, pp 69–73

  69. Dremin AN (1992) Phil Trans R Soc A (London) 339:354–355

    Google Scholar 

  70. Klimenko VY, Yakoventsev MY, Dremin AN (1993) Khim Fizika 12:671–680

    CAS  Google Scholar 

  71. Klimenko VY (1998) Khim Fizika 17:11–24

    CAS  Google Scholar 

  72. Zerilli FJ, Toton ET (1984) Phys Rev B 29:5891–5902

    Article  CAS  Google Scholar 

  73. Walker FE (1988) J Appl Phys 63:5548–5554

    Article  CAS  Google Scholar 

  74. Fayer MD, Tokmakoff A, Dlott DD (1993) Mater Res Soc Symp Proc 296:379–384

    CAS  Google Scholar 

  75. Fried LE, Ruggiero AJ (1994) J Phys Chem 98:9786–9791

    Article  CAS  Google Scholar 

  76. Dlott DD (1995) J Physique IV Coll. C4; supplement J Phys III 5: C4/337–343

  77. Hong X, Hill JR, Dlott DD (1995) Mater Res Soc Symp Proc 418:357–362

    Google Scholar 

  78. Dremin AN (1999) Toward detonation theory. Springer-Verlag, New York

    Google Scholar 

  79. Goto N, Yamawaki H, Tonokura K, Wakabayashi K, Yoshida M, Koshi M (2004) Mater Sci Forum, vol 465–466. Trans. Tech. Publ, Switzerland, p 189

    Google Scholar 

  80. Dubnov LV, Bakharevich NS, Romanov AI (1982) Industrial explosives. Izdat. Nedra, Moscow, p 82

    Google Scholar 

  81. Kohler J, Meyer R (2007) Explosives. VCH, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by the NSAF Foundation of National Natural Science Foundation of China and China Academy of Engineering Physics (Grant No. 10876013, 10576016), the National “973” Project, the Specialized Research Fund for the Doctoral Program of Higher Education (200802881043), and the Project-sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weihua Zhu or Heming Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, W., Xiao, H. First-principles band gap criterion for impact sensitivity of energetic crystals: a review. Struct Chem 21, 657–665 (2010). https://doi.org/10.1007/s11224-010-9596-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-010-9596-8

Keywords

Navigation