Skip to main content
Log in

Combined DFT with NBO and QTAIM studies on the hydrogen bonds in (CH3OH) n (n = 2–8) clusters

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The (CH3OH) n (n = 2–8) clusters formed via hydrogen bond (H-bonds) interactions have been studied systemically by density functional theory (DFT). The relevant geometries, energies, and IR characteristics of the intermolecular OH···O H-bonds have been investigated. The quantum theory of atoms in molecule (QTAIM) and natural bond orbital (NBO) analysis have also been applied to understand the nature of the hydrogen bonding interactions in clusters. The results show that both the strength of H-bonds and the deformation are important factors for the stability of (CH3OH) n clusters. The weakest H-bond was found in the dimer. The strengths of H-bonds in clusters increase from n = 2 to 8, moreover, the strengths of H-bonds in (CH3OH) n (n = 4–8) clusters are remarkably stronger than those in (CH3OH) n (n = 2, 3) clusters. The small differences of the strengths of H-bonds among (CH3OH) n (n = 6–8) clusters indicate that a partial covalent character is attributed to the H-bonds in these clusters. The linear relationships between the electron density of BCP (ρb) and the H···O bond length of H-bonds as well as the second-perturbation energies E(2) have also been investigated and used to study the nature of H-bonds, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Parthasarathi R, Elango M, Subramanian V, Sathyamurthy N (2009) J Phys Chem A 113:3744

    Article  CAS  Google Scholar 

  2. Piletic IR, Gaffney KJ, Fayer MD (2003) J Chem Phys 119:423

    Article  CAS  Google Scholar 

  3. Buck U, Huisken F (2000) Chem Rev 100:3863

    Article  CAS  Google Scholar 

  4. Jorgensen WI (1980) J Am Chem Soc 102:543

    Article  CAS  Google Scholar 

  5. Palinkas G, Hawlicka E, Heinzinger K (1987) J Phys Chem 91:4334

    Article  CAS  Google Scholar 

  6. Curtiss LA, Blander M (1988) Chem Rev 88:827

    Article  CAS  Google Scholar 

  7. Kay B, Castleman AW Jr (1985) J Phys Chem 89:4867

    Article  CAS  Google Scholar 

  8. Hagemeister F, Gruenloh CJ, Zwier T (1998) J Phys Chem A 102:82

    Article  CAS  Google Scholar 

  9. Sauer J, Bleiber A (1998) Pol J Chem 72:1524

    CAS  Google Scholar 

  10. Sum AK, Sandler SI (2000) J Phys Chem A 104:1121

    Article  CAS  Google Scholar 

  11. Buck U, Siebers JG, Wheatley RJ (1998) J Chem Phys 108:20

    Article  CAS  Google Scholar 

  12. Buck U, Siebers JG (1988) Eur Phys J D1:207

    Google Scholar 

  13. Kitagawa Y, Shoji M, Saito T, Nakanishi Y, Koizumi K, Kawakami T, Okumura M, Yamaguchi K (2008) Int J Quantum Chem 108:2881

    Article  CAS  Google Scholar 

  14. Maul R, Ortmann F, Preuss M, Hannewald K, Bechstedt F (2007) J Comput Chem 28:1817

    Article  CAS  Google Scholar 

  15. Rozas I, Alkorta I, Elguero J (2008) Struct Chem 19:923

    Article  CAS  Google Scholar 

  16. Troitino D, Bailey L, Peral F (2006) J Mol Struct Theochem 767:131

    Article  CAS  Google Scholar 

  17. Reed A, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  18. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford, UK

    Google Scholar 

  19. Popelier PLA (2000) Atoms in molecules: an introduction. Prentice Hall, London

    Google Scholar 

  20. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, Weinheim,

  21. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  22. Beche AD (1988) Phys Rev A 38:3098

    Article  Google Scholar 

  23. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  24. McLean AD, Chandler GS (1980) J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  25. Tian SX (2004) J Phys Chem B 108:20388

    Article  CAS  Google Scholar 

  26. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  27. Galvez O, Gomez PC, Pacios LF (2003) J Chem Phys 118:4878

    Article  CAS  Google Scholar 

  28. Miao R, Jin C, Yang GS, Hong J, Zhao CM, Zhu LG (2005) J Phys Chem A 109:2340

    Article  CAS  Google Scholar 

  29. Nozad AG, Meftah S, Ghasemi MH, Kiyani RA, Aghazadeh M (2009) Biophys Chem 141:49

    Article  CAS  Google Scholar 

  30. Parreira RLT, Valdes H, Galembeck SE (2006) Chem Phys 331:96

    Article  CAS  Google Scholar 

  31. Zhou HW, Lai WP, Zhang ZQ, Li WK, Cheung HY (2009) J Comput Aided Mol Des 23:153

    Article  CAS  Google Scholar 

  32. Koch U, Popelier PLA (1995) J Phys Chem 99:9747

    Article  CAS  Google Scholar 

  33. MJ Frisch, Trucks GW, Schlegel HB; Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery Jr JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2003) Revision B.01 ed. Gaussian, Inc., Pittsburgh, PA

  34. Biegler-König F AIM2000. University of Applied Sciences, Bielefeld, Germany

  35. Kitaura K, Morokuma K (1976) Int J Quantum Chem 10:325

    Article  CAS  Google Scholar 

  36. Morokuma K (1971) Chem Phys 55:1236

    CAS  Google Scholar 

  37. Reed AE, Weinhold F, Curtiss LA, Pochatko D (1986) J Phys Chem 84:5687

    Article  CAS  Google Scholar 

  38. Popelier PLA (1998) J Phys Chem A 102:1873

    Article  CAS  Google Scholar 

  39. Arnold WD, Oldfield E (2000) J Am Chem Soc 122:12835

    Article  CAS  Google Scholar 

  40. Pacios LF (2004) J Phys Chem A 108:1177

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengguo Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Z., Yu, L. & Dai, Y. Combined DFT with NBO and QTAIM studies on the hydrogen bonds in (CH3OH) n (n = 2–8) clusters. Struct Chem 21, 565–572 (2010). https://doi.org/10.1007/s11224-010-9588-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-010-9588-8

Keywords

Navigation