Skip to main content
Log in

Exploring the structural and electronic properties of nitrogen-containing exohydrogenated carbon nanotubes: a quantum chemistry study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Saturated nanotubes consisting of 2–10 and 20 layers of cyclic units of six-membered rings, each one having a pyrimidine-like framework (i.e., –C–C–C–N–C–N–), were studied by quantum chemistry methods using Density Functional Theory (DFT) at the B3LYP/6-31G* level of theory. Four different nanotube (NT) configurations were theoretically studied in this work. They were formed by covalently arranging each layer over the other, with uniform relative rotations of 0°, 60°, 120°, and 180° with respect to each of the layers. Different structures can be created by modulating the relative rotation as layers are added to the main nanostructure. NTs with a relative rotation of 60° showed both greater stabilities and highest potential for catalytic activity. All of them showed band gaps of around 0.2 eV. Charges and other properties can be controlled by appropriate layer arrangement. The studied families of NTs have a very small diameter and could find potential applications in chemistry, physics, and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ganji MD (2008) Nanotechnology 19:0257091

    Article  Google Scholar 

  2. Tománek D (2008) In: Jorio A, Dresselhaus MS, Dresselhaus G (eds) Advanced topics in the synthesis, structure, properties and applications topics. Appl Phys, vol 111. Springer, Berlin, 1 pp

  3. Xiong X, Ouyang J, Baeyens WRG, Delanghe JR, Shen X, Yang Y (2006) Electrophoresis 27:3243

    Article  CAS  Google Scholar 

  4. Shenkenberg DL (2008) Biophotonics Int 34

  5. Alam KM, Ray AK (2007) Nanotechnology 18:4957061

    Article  Google Scholar 

  6. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Appl Phys Lett 60:2204

    Article  CAS  Google Scholar 

  7. Hamada N, Sawada S, Oshiyama A (1992) Phys Rev Lett 68:1579

    Article  CAS  Google Scholar 

  8. Charlier JC (2002) Acc Chem Res 35:1063

    Article  CAS  Google Scholar 

  9. Czerw R, Terrones M, Charlier JC, Blase X, Foley B, Kamalakaran R, Grobert N, Terrones H, Ajayan PM, Blau W, Tekleab D, Rühle M, Carroll DL (2001) Nano Lett 1:457

    Article  CAS  Google Scholar 

  10. Zhao M, Xia Y, Lewis JP, Zhang RJ (2003) Appl Phys 94:2398

    Article  CAS  Google Scholar 

  11. Terrones M (2007) Acta Microsc 16:33

    Google Scholar 

  12. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Science 323:760

    Article  CAS  Google Scholar 

  13. Rocha AR, Rossi M, Fazzio A, Silva AJR (2008) Phys Rev Lett 100:1768031

    Google Scholar 

  14. Stojkovic D, Zhang P, Crespi VH (2001) Phys Rev Lett 87:1255021

    Article  Google Scholar 

  15. Stojkovic D, Lammert PE, Crespi VH (2007) Phys Rev Lett 99:0268021

    Article  Google Scholar 

  16. Yang FH, Lachawiec AJ Jr, Yang RT (2006) J Phys Chem B 110:6236

    Article  CAS  Google Scholar 

  17. Kaczmarek A, Dinadayalane TC, Lukaszewicz J, Leszczynski J (2007) Int J Quantum Chem 107:2211

    Article  CAS  Google Scholar 

  18. Dinadayalane TC, Kaczmarek A, Lukaszewicz J, Leszczynski J (2007) J Phys Chem C 111:7376

    Article  CAS  Google Scholar 

  19. Yildirim T, Gülseren O, Ciraci S (2001) Phys Rev B 64:075404

    Article  Google Scholar 

  20. Gülseren O, Yildirim T, Ciraci S (2002) Phys Rev B 66:1214011

    Article  Google Scholar 

  21. Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Science 323:610

    Article  CAS  Google Scholar 

  22. Sofo JO, Chaudhari AS, Barber GD (2007) Phys Rev B 75:153401

    Article  Google Scholar 

  23. Fuhrer MS, Adam S (2009) Nature 458:38

    Google Scholar 

  24. Lee SM, An KH, Lee YH, Seifert G, Frauenheim TA (2001) J Am Chem Soc 123:5059

    Article  CAS  Google Scholar 

  25. Froudakis GE (2002) J Phys Condens Matter 14:R453

    Article  CAS  Google Scholar 

  26. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Nature 386:377

    Article  CAS  Google Scholar 

  27. Rodriguez NM, Baker RTK (1997) US Patent Nr 5,653,951

  28. Henley D, Imholt TJ (2008) US Patent Nr 7,468,097

  29. Bilic A, Gale JD (2008) J Phys Chem 112:12568

    CAS  Google Scholar 

  30. Yang SH, Shin WH, Kang JK (2008) Small 4:437

    Article  CAS  Google Scholar 

  31. Balbo Block MA, Kaiser C, Khan A, Hecht S (2005) Top Curr Chem 245:89

    Google Scholar 

  32. Fenniri H (2004) US Patent Nr 6,696,565

  33. Johnson RS, Yamazaki T, Kovalenko A, Fenniri H (2007) J Am Chem Soc 129:5735

    Article  CAS  Google Scholar 

  34. HyperChem release 7.0. Hypercube Inc, 1115 NW 4th Street, Gainesville, FL 32601, USA

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. Revision D01. Gaussian Inc, Wallingford

  36. Becke ADJ (1993) Chem Phys 98:5648

    CAS  Google Scholar 

  37. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  38. Jaguar version 7.5 (2008) Schrödinger, New York

  39. Wang JL, Lushington GH, Mezey PG (2006) J Chem Inf Model 46:1965

    Article  CAS  Google Scholar 

  40. Wang JL, Mezey PG (2006) J Chem Inf Model 46:801

    Article  CAS  Google Scholar 

  41. Kang HS, Jeong S (2004) Phys Rev B 70:2334111

    Article  Google Scholar 

  42. Felice RD, Calzolari A, Varsano D, Rubio A (2005) Lect Notes Phys 680:77

    Article  Google Scholar 

  43. Dreizler RM, Gross EKU (1990) Density functional theory, an approach to the quantum many body problem. Springer, Berlin

  44. Van de Walle CG (2008) J Phys Condens Matter 20:064230

    Article  Google Scholar 

  45. Wang N, Tang ZK, Li GD, Chen JS (2000) Nature 408:50

    Article  CAS  Google Scholar 

  46. Contreras ML, Benítez E, Alvarez J, Rozas R (2009) Algorithms 2:108. http://wwwmdpicom/1999-4893/2/1/108

  47. Tang ZK, Zhai JP, Tong YY, Hu XJ, Saito R, Feng YJ, Sheng P (2008) Phys Rev Lett 101:047402

    Article  CAS  Google Scholar 

  48. Trasobares S, Stéphan O, Colliex C, Hsu WK, Kroto HW, Walton DRM (2002) J Chem Phys 116:8966

    Article  CAS  Google Scholar 

  49. Zhong Z, Lee GI, Mo CB, Hong SH, Kang JK (2007) Chem Mater 19:2918

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the Direction of Scientific and Technological Research DICYT-USACH project Nr 060742CF and by the SDT-USACH project Nr CIA 2981. In addition, the central cluster of the Faculty of Chemistry and Biology and the VRID of the University of Santiago de Chile are acknowledged for allocating computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Leonor Contreras.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOC 313 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Contreras, M.L., Avila, D., Alvarez, J. et al. Exploring the structural and electronic properties of nitrogen-containing exohydrogenated carbon nanotubes: a quantum chemistry study. Struct Chem 21, 573–581 (2010). https://doi.org/10.1007/s11224-010-9587-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-010-9587-9

Keywords

Navigation