Skip to main content
Log in

The tunability of the electronic structures for poly(carbosilylsilanes): a theoretical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

To tune purposefully the electronic structures of poly(carbosilylsilanes), a theory study has been investigated using the density functional theory combined with AM1 method. Attentions were paid to the dependence of molecular geometries and absorption spectra on the backbone conformation and the various substituting groups. The strong electronegative substituents can more effectively tune the geometries and spectra of the polysilanes than the alkyl ones. Their main-chain substitutions can induce the great red-shift of the absorption spectra, and the side-chain substitutions can induce the blue-shift. The length of methylene chain in the carbosilyl groups exerts the small effect on the absorption spectra, but with the lengthening of side chain, poly(carbosilylsilanes) have a preference for the all-trans conformation with the loose helix backbone. Different from the alkyl side chain in poly(alkylsilanes), the lengthening of carbosilyl chain leads to the decrease of the positive charges of silicon backbone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3
Fig. 3

Similar content being viewed by others

References

  1. Fujiki M (1994) J Am Chem Soc 116:11976

    Article  CAS  Google Scholar 

  2. Miller RD, Michl J (1989) Chem Rev 89:1359

    Article  CAS  Google Scholar 

  3. Zakrevskyy SNY, Stumpe J, Kadashchuk BSA (2006) Macromolecules 39:690

    Article  Google Scholar 

  4. Zhou XH, Niu YH, Huang F, Liu MS, Jen AK-Y (2007) Macromolecules 40:3015

    Article  CAS  Google Scholar 

  5. Sasaki M, Shibano Y, Tsuji H, Araki Y, Tamao K, Ito O (2007) J Phys Chem A 111(16):2974

    Article  Google Scholar 

  6. Lalevée J, El-Roz M, Morlet-Savary F, Graff B, Allonas X, Fouassier JP (2007) Macromolecules 40:8527

    Article  Google Scholar 

  7. Miao S, Zhang CL, Liu Z, Han B, Xie Y, Ding SJ, Yang ZZ (2008) J Phys Chem C 112:774

    Article  CAS  Google Scholar 

  8. Karttunen AJ, Linnolahti M, Pakkanen TA (2007) J Phys Chem C 111:2545

    Article  CAS  Google Scholar 

  9. Tuan HY, Korgel BA (2008) Chem Mater 20:1239

    Article  CAS  Google Scholar 

  10. Yashima E, Maeda K, Furusho Y (2008) Acc Chem Res 41(9):1166

    Article  CAS  Google Scholar 

  11. Sharma A, Lourderaj U, Deepak, Sathyamurthy N (2005) J Phys Chem B 109:15860

  12. Cleij TJ, King JK, Jenneskens LW (2000) Macromolecules 33:89

    Article  CAS  Google Scholar 

  13. Jalali-Heravi M, McManus SP, Zutaut SE, McDonald JK (1991) Chem Mater 3:1024

    Article  CAS  Google Scholar 

  14. Apeloig Y, Danovich D (1996) Organometallics 15:350

    Article  CAS  Google Scholar 

  15. Tada T, Yoshimura R (2003) J Phys Chem A 107(31):6091

    Article  CAS  Google Scholar 

  16. Tachikawa H, Kawabata H (2007) J Chem Theory Comput 3(1):184

    Article  CAS  Google Scholar 

  17. Sun H (1995) Macromolecules 28:701

    Article  CAS  Google Scholar 

  18. Obata K, Kabuto C, Kira M (1997) J Am Chem Soc 119:11345

    Article  CAS  Google Scholar 

  19. Trefonas P, Damewood JR, West R, Miller RD (1985) Organometallics 4:1318

    Article  CAS  Google Scholar 

  20. KariKari EK, Greso AJ, Farmer BL, Miller RD, Rabolt JF (1993) Macromolecules 26:3937

    Article  CAS  Google Scholar 

  21. Shankar R, Joshi A (2005) Macromolecules 38(10):4176

    Article  CAS  Google Scholar 

  22. Stephens PJ, Devlin FJ, Ashvar CS, Chabalowski CF, Frisch MJ (1994) Faraday Discuss 99:103

    Article  CAS  Google Scholar 

  23. Stephens PJ, Devlin FJ, Frisch MJ, Chabalowski CF (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  24. Dewar MJS, Yuan Y-C (1990) Inorg Chem 29:3881

    Article  CAS  Google Scholar 

  25. Dewar MJS, Holder AJ (1990) Organometallics 9:508

    Article  CAS  Google Scholar 

  26. Anders E, Koch R, Freunscht P (1993) J Comp Chem 14:1301

    Article  CAS  Google Scholar 

  27. Crespo R, Piqueras MC, Tomás F (1994) J Chem Phys 100(9):6953

    Article  CAS  Google Scholar 

  28. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  29. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  30. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200

    Article  CAS  Google Scholar 

  31. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  32. Weinhold F, Carpenter JE (1988) Plenum 227

  33. Zhao Y, Truhlar DG (2007) J Chem Theory Comput 3(1):289

    Article  CAS  Google Scholar 

  34. Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256:454

    Article  CAS  Google Scholar 

  35. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439

    Article  CAS  Google Scholar 

  36. Stratmann RE, Scuseria GE, Frisch MJJ (1998) Chem Phys 109:8218

    CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Revision B.03, Gaussian, Inc., Pittsburgh PA

  38. Imhof R, Teramae H, Michl J (1997) Chem Phys Lett 270(5–6):500

    Article  CAS  Google Scholar 

  39. Schepers T, Michl J (2002) J Phys Org Chem 15(8):490

    Article  CAS  Google Scholar 

  40. George CB, Ratner MA, Lambert JB (2009) J Phys Chem A 113:3876

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 20574043, 20874057 and 20873074), the Key Natural Science Foundation of Shandong Province of China (Nos. Z2007B02 and Q2008B07) and 973 project of the Ministry of Science and Technology of China (No. 2009CB930103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyu Feng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 77 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Y., Feng, S., Sun, X. et al. The tunability of the electronic structures for poly(carbosilylsilanes): a theoretical study. Struct Chem 21, 583–592 (2010). https://doi.org/10.1007/s11224-010-9586-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-010-9586-x

Keywords

Navigation