Skip to main content
Log in

Density functional theory study on the –SO3H functionalized acidic ionic liquids

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this work, the structures of the –SO3H functionalized acidic ionic liquid 1-(3-sulfonic acid) propyl-3-methylimidazolium hydrogen sulfate ([C3SO3Hmim]HSO4), including its precursor compound (zwitterion), cation, and cation–anion ion-pairs, were optimized systematically by the DFT theory at B3LYP/6-311++G** level, and their most stable geometries were obtained. The calculation results indicated that a great tendency to form strong intramolecular hydrogen bonds was present in the zwitterion, and this tendency was weakened in the cation that was the protonation product of zwitterion. The intramolecular hydrogen bonds and intermolecular hydrogen bonds coexisted in the ionic liquid, and they played an important role in the stability of the systems. The strongest interaction in the ionic liquid was found between the anion and the functional group. The transition state research and the intrinsic reaction coordinate analysis of the hydrogen transfer reaction showed that, when the cation and the anion interacted near the functional group by double O–H···O hydrogen bonds, the ionic liquid was inclined to exist in a form of the zwitterion and H2SO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Welton T (1999) Chem Rev 99:2071–2083. doi:10.1021/cr980032t

    Article  CAS  Google Scholar 

  2. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Green Chem 3:156–164. doi:10.1039/b103275p

    Article  CAS  Google Scholar 

  3. Wassercheid P, Keim W (2000) Angew Chem Int Ed 39:3772–3789. doi:10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5

    Article  Google Scholar 

  4. Hagiwara R, Ito YJ (2000) Fluor Chem 105:221–227. doi:10.1016/S0022-1139(99)00267-5

    Article  CAS  Google Scholar 

  5. Seddon KRJ (1997) Chem Technol Biotechnol 68:351–356. doi:10.1002/(SICI)1097-4660(199704)68:4<351::AID-JCTB613>3.0.CO;2-4

    Article  CAS  Google Scholar 

  6. Dupont J, Souza RF, Suarez PA (2002) Chem Rev 102:3667–3692. doi:10.1021/cr010338r

    Article  CAS  Google Scholar 

  7. Gordon CM (2001) Appl Catal Gen 222:101–117. doi:10.1016/S0926-860X(01)00834-1

    Article  CAS  Google Scholar 

  8. Larsen AS, Holbrey JD, Tham FS, Reed CAJ (2000) Am Chem Soc 122:7264–7272. doi:10.1021/ja0007511

    Article  CAS  Google Scholar 

  9. Legeay JC, Vanden E, Jean J, Bazureau JP (2005) Tetrahedron 61:12386–12397. doi:10.1016/j.tet.2005.09.118

    Article  CAS  Google Scholar 

  10. Anjaiah S, Chandrasekhar S, Gree R (2004) Tetrahedron Lett 45:569–571. doi:10.1016/j.tetlet.2003.10.198

    Article  CAS  Google Scholar 

  11. Luo HM, Dai S, Bonnesen PV, Buchanan ACJ (2006) Alloys Compd 418:195–199. doi:10.1016/j.jallcom.2005.10.054

    Article  CAS  Google Scholar 

  12. Ouadi A, Gadenne B, Hesemann P, Moreau JE, Billard I, Gaillard C, Mekki S, Moutiers G (2006) Chem Eur J 12:3074–3081. doi:10.1002/chem.200500741

    Article  CAS  Google Scholar 

  13. Fang D, Luo J, Zhou KL, Liu ZL (2007) Catal Lett 116:1–2. doi:10.1007/s10562-007-9124-7

    Article  Google Scholar 

  14. Gu YL, Shi F, Deng YQJ (2004) Mol Catal A Chem 212:71–75. doi:10.1016/j.molcata.2003.10.039

    Article  CAS  Google Scholar 

  15. Xing HB, Wang T, Zhou ZH, Dai YYJ (2007) Mol Catal A Chem 264:53–59. doi:10.1016/j.molcata.2006.08.080

    Article  CAS  Google Scholar 

  16. Zhang SJ, Lv XM (2006) Ionic liquids—from fundamentals to applications. Scientific Publish Ltd, Beijing, China

    Google Scholar 

  17. Milet A, Korona T, Moszynski R, Kochanski EJ (1999) Chem Phys 111:7727–7735

    CAS  Google Scholar 

  18. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249. doi:10.1103/PhysRevB.45.13244

    Article  Google Scholar 

  19. Lee C, Yang WT, Parr RG (1988) Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  20. Becke ADJ (1993) Chem Phys 98:5648–5652

    CAS  Google Scholar 

  21. Becke AD (1988) Phys Rev A 38:3098–3100. doi:10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  22. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873. doi:10.1021/cr990029p

    Article  CAS  Google Scholar 

  23. Meng Z, Dolle A, Carper WR (2002) J Mol Struct (THEOCHEM) 585:119–128

    Article  CAS  Google Scholar 

  24. Lagrost C, Gmouh S, Vaultier M, Hapiot PJ (2004) Phys Chem A 108:6175–6182. doi:10.1021/jp049017k

    Article  CAS  Google Scholar 

  25. Talaty ER, Raja S, Storhaug VJ, Dolle A, Robert CWJ (2004) Phys Chem B 108:13177–13184. doi:10.1021/jp040199s

    Article  CAS  Google Scholar 

  26. Dymek CJ, Grossie DA, Fratini AV, Adams WW (1989) J Mol Struct 213:25–34. doi:10.1016/0022-2860(89)85103-8

    Article  CAS  Google Scholar 

  27. Hanke CG, Atamas NA, Lynden-Bell RM (2001) Mol Phys 99:801–809. doi:10.1080/00268970010018981

    Article  CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian03. Gaussian, Inc., Pittsburgh PA

  29. Turner EA, Pye CC, Singer RDJ (2003) Phys Chem A 107:2277–2288. doi:10.1021/jp021694w

    Article  CAS  Google Scholar 

  30. Dong K, Zhang SJ, Wang DX, Yao XQJ (2006) Phys Chem A 110:9775–9782. doi:10.1021/jp054054c

    Article  CAS  Google Scholar 

  31. Simon S, Duran M, Dannenberg JJJ (1996) Chem Phys 105:11024–11031

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, XM., Song, ZX. & Wang, HJ. Density functional theory study on the –SO3H functionalized acidic ionic liquids. Struct Chem 20, 509–515 (2009). https://doi.org/10.1007/s11224-009-9448-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-009-9448-6

Keywords

Navigation