Skip to main content
Log in

A chemometric study on the analgesic activity of cannabinoid compounds using SDA, KNN and SIMCA methods

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The supervised pattern recognition methods K-Nearest Neighbors (KNN), stepwise discriminant analysis (SDA), and soft independent modelling of class analogy (SIMCA) were employed in this work with the aim to investigate the relationship between the molecular structure of 27 cannabinoid compounds and their analgesic activity. Previous analyses using two unsupervised pattern recognition methods (PCA—principal component analysis and HCA—hierarchical cluster analysis) were performed and five descriptors were selected as the most relevants for the analgesic activity of the compounds studied: R 3 (charge density on substituent at position C3), Q 1 (charge on atom C1), A (surface area), log P (logarithm of the partition coefficient) and MR (molecular refractivity). The supervised pattern recognition methods (SDA, KNN, and SIMCA) were employed in order to construct a reliable model that can be able to predict the analgesic activity of new cannabinoid compounds and to validate our previous study. The results obtained using the SDA, KNN, and SIMCA methods agree perfectly with our previous model. Comparing the SDA, KNN, and SIMCA results with the PCA and HCA ones we could notice that all multivariate statistical methods classified the cannabinoid compounds studied in three groups exactly in the same way: active, moderately active, and inactive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Roger GP (2006) Br J Pharmacol 147:S163. doi:10.1038/sj.bjp.0706406

    Article  Google Scholar 

  2. Roger GP (2004) Euphytica 140:73. doi:10.1007/s10681-004-4756-9

    Article  Google Scholar 

  3. Tiziano T, Píer LF, Clementina M, Gabriella O, Giuseppe S, Adriano M (2006) J Med Chem 49:984. doi:10.1021/jm050875u

    Article  Google Scholar 

  4. Carl RL, Arthur CR, Alexander FH (2004) Br J Pharmacol 143:227. doi:10.1038/sj.bjp.0705931

    Article  Google Scholar 

  5. Honório KM, da Silva ABF (2005) J Mol Model 11:200. doi:10.1007/s00894-005-0243-z

    Article  Google Scholar 

  6. Arroio A, Honório KM, da Silva ABF (2004) J Mol Struct THEOCHEM 709:223. doi:10.1016/j.theochem.2003.10.079

    Article  CAS  Google Scholar 

  7. Romeder JM (1973) Methode Programme d’analyse Discriminante. Dunod, Paris

    Google Scholar 

  8. Kowalski BR, Bender CF (1972) J Am Chem Soc 94:5632. doi:10.1021/ja00771a016

    Article  CAS  Google Scholar 

  9. Wold S (1976) Pattern Recognit 8:127. doi:10.1016/0031-3203(76)90014-5

    Article  Google Scholar 

  10. Molfetta FA, Honório KM, Alves CN, da Silva ABF (2004) J Mol Struct THEOCHEM 674:191. doi:10.1016/j.theochem.2003.12.007

    Article  CAS  Google Scholar 

  11. Mechoulam R (1973) Marijuana: chemistry, pharmacology, metabolism and clinical effects. Academic Press, New York

    Google Scholar 

  12. Petersen RC (1980) Marijuana research findings.. Department of Health and Human Services, Maryland

    Google Scholar 

  13. Mechoulam R (1970) Science 168:1166. doi:10.1126/science.168.3936.1159

    Article  Google Scholar 

  14. da Silva ABF, Trsic M (1995) J Mol Struct 356:256. doi:10.1016/0022-2860(95)08959-Y

    Google Scholar 

  15. Razdan RK (1986) Pharmacol Rev 38:49

    Google Scholar 

  16. Dewar MJ, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902. doi:10.1021/ja00299a024

    Article  CAS  Google Scholar 

  17. Beebe KR, Pell RJ, Seasholtz MB (1998) Chemometrics: a practical guide. Wiley-Interscience, New York

    Google Scholar 

  18. INFOMETRIX. Pirouettte Multivariate Data analysis form IBM PC Systems, Version 2.02. Seattle, WA, 1990-1996

  19. STATSOFT INC. Statistica 4.3 Tulsa, 1993

  20. Souza J Jr, Molfetta FA, Honório KM, Santos RHA, da Silva ABF (2004) J Chem Inf Comput Sci 44:1153. doi:10.1021/ci030384n

    CAS  Google Scholar 

  21. Gardiner WP (1997) Statistical Analysis Methods for Chemists. Royal Society Chemistry, Cambridge

    Google Scholar 

  22. Weber KC, Honório KM, Bruni AT, da Silva ABF (2006) J Mol Model 12:915. doi:10.1007/s00894-005-0083-x

    Article  CAS  Google Scholar 

  23. Ferreira MMC (2002) J Braz Chem Soc 13:742

    CAS  Google Scholar 

  24. Clark RD (2004) J Mol Graph Model 22:487. doi:10.1016/j.jmgm.2004.03.009

    Article  CAS  Google Scholar 

  25. Sharaf MA, Illman DL, Kowalski BR (1986) Chemometrics. Wiley, New York

    Google Scholar 

  26. Brereton RG (1992) Multivariate pattern recognition in chemometrics, illustrated by case studies. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank FAPESP and CNPq (Brazilian agencies) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. F. da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arroio, A., Lima, E.F., Honório, K.M. et al. A chemometric study on the analgesic activity of cannabinoid compounds using SDA, KNN and SIMCA methods. Struct Chem 20, 577–585 (2009). https://doi.org/10.1007/s11224-009-9437-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-009-9437-9

Keywords

Navigation