Skip to main content
Log in

A study on the influence of molecular properties in the psychoactivity of cannabinoid compounds

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Several molecular properties are calculated for a set of 26 cannabinoid compounds with the goal of connecting the psychoactivity of the compounds with an appropriate set of calculated properties. For this purpose we used quantum chemical (the AM1 semi-empirical method) and chemometric methods. The AM1 method was employed to calculate the set of quantum chemical molecular properties and the chemometric methods were employed with the aim of selecting the most relevant properties to be correlated with psychoactivity. The chemometric methods used were Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA) and the K-Nearest Neighbor (KNN) method. The chemometric analysis showed that an electronic property (energy of LUMO), a hydrophobic property (log P), a steric property (volume of the substituent at the C4 position) and a topological property (Lovasz–Pelikan index) were the most important variables for the separation between the psychoactive and psychoinactive compounds. In order to validate our PCA, HCA and KNN results, eight new cannabinoid compounds (with known psychoactivity) were used in a prediction study and were classified correctly by the methods used in this work, indicating that our PCA, HCA and KNN models are able to predict reliable psychoactivity of cannabinoid compounds.

Figure: Δ9-THC

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mechoulam R, Ben-Shabat S (1999) Nat Prod Rep 16:131–143

    Article  CAS  PubMed  Google Scholar 

  2. Joy JE, Watson SJ, Benson JA (1999) Marijuana and medicine: assessing the science base. National Academy Press, New York

    Google Scholar 

  3. Reggio PH, Greer KV, Cox SM (1989) J Med Chem 32:1630–1635

    Article  CAS  PubMed  Google Scholar 

  4. Reggio PH, Panu AM, Miles S (1993) J Med Chem 36:1761–1771

    Article  CAS  PubMed  Google Scholar 

  5. Mechoulam R, Hanus L (2000) Chem Phys Lipids 108:1–13

    Article  CAS  PubMed  Google Scholar 

  6. Montanari CA (1995) Quím Nova 18:56–64

    CAS  Google Scholar 

  7. Martin YC (1981) J Med Chem 24:229–237

    Article  CAS  PubMed  Google Scholar 

  8. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  9. Kowalski BR, Bender CF (1972) J Am Chem Soc 94:5632–5639

    Article  CAS  Google Scholar 

  10. Bruns RE, Faigle JF (1985) Quim Nova 8:84–99

    CAS  Google Scholar 

  11. Massart DL, Vandeginste BGM, Dening SN, Michotte Y, Kaufman L (1988) Chemometrics: a textbook. Elsevier, Amsterdam

    Google Scholar 

  12. Malinowski ER (1991) Factor analysis in chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  13. Kowalski BR (1984) Chemometrics: mathematics and statistics in chemistry. D Reidel Publishing Company, Cosenza

    Google Scholar 

  14. Sharaf MA, Illman DL, Kowalski BR (1986) Chemometrics. Willey, New York

    Google Scholar 

  15. Beeb KR, Pell RJ, Seasholtz MB (1998) Chemometrics: a practical guide. Willey, New York

    Google Scholar 

  16. Mechoulam R (1973) Marijuana: chemistry, pharmacology, metabolism and clinical effects. Academic Press, New York

    Google Scholar 

  17. Petersen RC (1980) Marijuana research findings. Department of Health and Human Services, Maryland

    Google Scholar 

  18. Mechoulam R (1970) Science 168:1159–1166

    CAS  PubMed  Google Scholar 

  19. Da Silva ABF, Trsic M (1995) J Mol Struct 356:247–256

    Article  CAS  Google Scholar 

  20. Razdan RK (1986) Pharmacol Rev 38:75–149

    CAS  PubMed  Google Scholar 

  21. Allinger NL, Yuh YH, Lin JH (1989) J Am Chem Soc 111:8551–8566

    Article  CAS  Google Scholar 

  22. Ostlund NS (1995) HyperChem: program for molecular visualization and simulation. University of Waterloo, Canada

    Google Scholar 

  23. Ostlund NS (1994) Hypercube. ChemPlus: extensions for hyperchem. Ontario, Canada

    Google Scholar 

  24. Dewar MJS (1994) AMPAC 6.5: program for semi-empirical calculations. University of Texas, USA

    Google Scholar 

  25. Hehre WJ, Huang WW, Klunzinger PE, Deppmeier BJ, Driessen AJ (1996) Spartan 5.0, user’s guide. Irvine, CA

    Google Scholar 

  26. Todeschini R (1997) WHIM/3D-QSAR. Talete srl, Milano

    Google Scholar 

  27. Todeschini R, Gramatica P (1998) Persp Drug Discov Des 9:355–380

    Article  Google Scholar 

  28. Jolliffe IT (1986) Principal component analysis. Springer-Verlag, New York

    Google Scholar 

  29. Johnson RA, Wichern DW (1992) Applied multivariate statistical analysis. Prentice-Hall, New Jersey

    Google Scholar 

  30. Lindon JC, Holmes E, Nicholson JK (2001) Prog Nucl Magn Reson Spectrosc 39:1–40

    Article  CAS  Google Scholar 

  31. Dillon WR, Goldstein M (1984) Multivariate analysis. Wiley, New York

    Google Scholar 

  32. Tavares LC (1993) D Sc Thesis. Universidade de São Paulo, São Paulo

  33. Lovasz L, Pelikan J (1973) Period Math Hung 3:175–182

    Google Scholar 

  34. Manly BFJ (1986) Multivariate statistical methods. Chapman& Hall, New York

    Google Scholar 

  35. Honorio KM, da Silva ABF (2003) Int J Quant Chem 95:126–132

    Article  CAS  Google Scholar 

  36. Honorio KM, Freitas LG, Trsic M, da Silva ABF (2001) J Mol Struct (THEOCHEM) 538:99–106

    Article  CAS  Google Scholar 

  37. Honorio KM, da Silva ABF (2002) J Mol Struct (THEOCHEM) 578:111–117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CNPq and CAPES (Brazilian agencies) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albérico B. F. da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honório, K.M., da Silva, A.B.F. A study on the influence of molecular properties in the psychoactivity of cannabinoid compounds. J Mol Model 11, 200–209 (2005). https://doi.org/10.1007/s00894-005-0243-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0243-z

Keywords

Navigation