Skip to main content
Log in

Theoretical studies of a singlet oxygen-releasing dioxapaddlane (1,4-diicosa naphthalene-1,4-endoperoxide)

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Theoretical calculations have been used to examine singlet oxygen release from a naphthalene endoperoxide which bears a flexible (CH2)22 polymethylene “lid”. Monte Carlo and ONIOM calculations that incorporated semi-empirical and density functional theory predicted the conformational influence of the polymethylene chain in the cycloreversion of dioxapaddlane, 1,4-diicosa naphthalene-1,4-endoperoxide, to 1O2 and 1,4-diicosa naphthalene. This study attempts to build a connection between 1O2 generation and “jump rope” dynamics of the dioxapaddlane. The polymethylene chain appears to function as a gatekeeper for the oxygen. Instead of coming full circle, a semi-circle rotation of the polymethylene bridge protected the peroxide group, limiting the dissociation of 1O2 from the naphthalene site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Scheme 4
Scheme 5
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wasserman HH, Larsen DL (1972) Chem Commun 5:253

    Google Scholar 

  2. Aubry J-M, Pierlot C, Rigaudy J, Schmidt R (2003) Acc Chem Res 36:668. doi:10.1021/ar010086g

    Article  CAS  Google Scholar 

  3. Saito I, Matsuura T (1979) In: Wasserman HH, Murray RW (eds) Singlet oxygen, vol 40. Academic Press, New York, p 511

    Google Scholar 

  4. Balci M (1981) Chem Rev 81:91. doi:10.1021/cr00041a005

    Article  CAS  Google Scholar 

  5. Clennan EL, Foote CS (1992) In: Ando W (ed) Organic peroxides. Wiley, Chichester, UK, p 255

    Google Scholar 

  6. Turro NJ, Chow MF, Rigaudy J (1981) J Am Chem Soc 103:7218. doi:10.1021/ja00414a029

    Article  CAS  Google Scholar 

  7. Ben-Shabat S, Itagaki Y, Jockusch S, Sparrow JR, Turro NJ (2002) Angew Chem Int Ed Engl 41:814. doi:10.1002/1521-3773(20020301)41:5<814::AID-ANIE814>3.0.CO;2-2

    Article  CAS  Google Scholar 

  8. Aubry J-M, Mandard-Cazin B, Rougee M, Bensasson RV (1995) J Am Chem Soc 117:9159. doi:10.1021/ja00141a006

    Article  CAS  Google Scholar 

  9. Pierlot C, Aubry J-M (1997) Chem Commun (Camb) 38:2289. doi:10.1039/a705716d

    Article  Google Scholar 

  10. Pierlot C, Poprawski J, Marko J, Aubry J-M (2000) Tetrahedron Lett 41:5063

    Article  CAS  Google Scholar 

  11. Liang Z, Zhao W, Wang S, Tang Q, Lam S-C, Miao Q (2008) Org Lett 10:2007

    Article  CAS  Google Scholar 

  12. Saito I, Nagata R, Matsuura T (1981) Tetrahedron Lett 22:4231. doi:10.1016/S0040-4039(01)82112-2

    Article  CAS  Google Scholar 

  13. Twarowski A (1988) J Phys Chem 92:6580. doi:10.1021/j100334a021

    Article  CAS  Google Scholar 

  14. Wixom MR (1990) J Phys Chem 94:4926. doi:10.1021/j100375a031

    Article  CAS  Google Scholar 

  15. Fudickar W, Linker T (2006) Chem Eur J 12:9276

    Article  CAS  Google Scholar 

  16. Zehm D, Fudickar W, Linker T (2007) Angew Chem Int Ed 46:7689

    Article  CAS  Google Scholar 

  17. Sheats JR (1992) Trends Phys Chem 3:191

    CAS  Google Scholar 

  18. Mondal R, Shah BK, Neckers DC (2007) J Photochem Photobiol A: Chem 192:36

    Article  CAS  Google Scholar 

  19. Twarowski A, Dao P (1988) J Phys Chem 92:5292. doi:10.1021/j100329a045

    Article  CAS  Google Scholar 

  20. Garavelli M, Bernardi F, Olivucci M, Robb MA (1998) J Am Chem Soc 120:10210. doi:10.1021/ja9805270

    Article  CAS  Google Scholar 

  21. Bobrowski M, Liwo A, Oldzieg S, Jeziorek D, Ossowski T (2000) J Am Chem Soc 122:8112. doi:10.1021/ja001185c

    Article  CAS  Google Scholar 

  22. Sevin F, McKee ML (2001) J Am Chem Soc 123:4591. doi:10.1021/ja010138x

    Article  CAS  Google Scholar 

  23. Langeland JL, Werstiuk NH (2003) Can J Chem 81:525. doi:10.1139/v03-037

    Article  CAS  Google Scholar 

  24. Singleton DA, Hang C, Szymanski MJ, Meyer MP, Leach AG, Kuwata KT, Chen JS, Greer A, Foote CS, Houk KN (2003) J Am Chem Soc 125:1319. doi:10.1021/ja027225p

    Article  CAS  Google Scholar 

  25. Ricca A, Bauschlicher CW (2003) Phys Rev B 68:035433. doi:10.1103/PhysRevB.68.035433

    Article  Google Scholar 

  26. Y-f Zhang, Z-f Liu (2004) J Phys Chem B 108:11435. doi:10.1021/jp049088j

    Article  Google Scholar 

  27. Yim WL, Liu ZF (2004) Chem Phys Lett 398:298. doi:10.1016/j.cplett.2004.09.082

    Article  Google Scholar 

  28. Paterson MJ, Christiansen O, Jensen F, Ogilby PR (2006) Photochem Photobiol 82:1136. doi:10.1562/2006-03-17-IR-851

    Article  CAS  Google Scholar 

  29. Burgert R, Schnöckel H, Grubisic A, Li X, Stokes ST, Bowen KT, Ganteför GF, Kiran B, Jena P (2008) Science 319:438. doi:10.1126/science.1148643

    Article  CAS  Google Scholar 

  30. Leach AG, Houk KN, Foote CS (2008) J Org Chem 73:8511. doi:10.1021/jo8016154

    Article  CAS  Google Scholar 

  31. Wasserman HH, Wiberg KB, Larsen DL, Parr J (2005) J Org Chem 70:105. doi:10.1021/jo040228v

    Article  CAS  Google Scholar 

  32. Marshall JA (1980) Acc Chem Res 13:213. doi:10.1021/ar50151a004

    Article  CAS  Google Scholar 

  33. Marshall JA (1989) Chem Rev 89:150. doi:10.1021/cr00097a006

    Article  Google Scholar 

  34. Busch DH, Alcock NW (1994) Chem Rev 94:585. doi:10.1021/cr00027a003

    Article  CAS  Google Scholar 

  35. Winnik MA (1981) Chem Rev 81:491. doi:10.1021/cr00045a004

    Article  CAS  Google Scholar 

  36. Dale J (1976) Top Stereochem 9:199

    Article  CAS  Google Scholar 

  37. Kanomata N, Ochiai Y (2001) Tetrahedron Lett 42:1045

    Article  CAS  Google Scholar 

  38. Whitlock BJ, Whitlock HW (1983) J Am Chem Soc 105:838. doi:10.1021/ja00342a032

    Article  CAS  Google Scholar 

  39. Paquette LA, Trova MP (1988) J Am Chem Soc 110:8197. doi:10.1021/ja00232a037

    Article  CAS  Google Scholar 

  40. Marshall JA, Audia VH, Jenson TM, Guida WC (1986) Tetrahedron 42:1703. doi:10.1016/S0040-4020(01)87587-6

    Article  CAS  Google Scholar 

  41. Fraser SJ, Winnik MA (1981) J Chem Phys 75:4683. doi:10.1063/1.442586

    Article  CAS  Google Scholar 

  42. Ueda T, Kanomata N, Machida H (2005) Org Lett 7:2365. doi:10.1021/ol0506258

    Article  CAS  Google Scholar 

  43. Inoue Y, Ueoka T, Kuroda T, Hakushi T (1983) J Chem Soc, Perkin Trans 2 7:983. doi:10.1039/p29830000983

    Article  Google Scholar 

  44. Stevens JC, Busch DH (1980) J Am Chem Soc 102:3285. doi:10.1021/ja00529a084

    Article  CAS  Google Scholar 

  45. Lin W-K, Alcock NW, Busch DH (1991) J Am Chem Soc 113:7603. doi:10.1021/ja00020a023

    Article  CAS  Google Scholar 

  46. Eaton PE, Leipzig BD (1983) J Am Chem Soc 105:1656. doi:10.1021/ja00344a042

    Article  CAS  Google Scholar 

  47. Li YQ, Thiemann T, Mimura K, Sawada T, Mataka S, Tashiro M (1998) Eur J Org Chem 9:1841. doi:10.1002/(SICI)1099-0690(199809)1998:9<1841::AID-EJOC1841>3.0.CO;2-P

    Article  Google Scholar 

  48. Paquette LA, Fabris F, Tae J, Gallucci JC, Hofferberth JE (2000) J Am Chem Soc 122:3391. doi:10.1021/ja9943849

    Article  CAS  Google Scholar 

  49. Paquette LA, Mendez-Andino J (2001) Tetrahedron Lett 42:967. doi:10.1016/S0040-4039(00)02212-7

    Article  CAS  Google Scholar 

  50. Tobe Y, Fujita H, Wakaki I, Terashima K, Kobiro K, Kakiuchi K, Odaira Y (1984) J Chem Soc Perkin Trans 1 12:2681. doi:10.1039/p19840002681

    Article  Google Scholar 

  51. Newkome GR, Theriot KJ, Gupta VK, Balz RN, Fronczek FR (1986) Inorg Chim Acta 114:21. doi:10.1016/S0020-1693(00)84582-X

    Article  CAS  Google Scholar 

  52. Wada Y, Ishimura T, Nishimura (1992) J Chem Ber 125:2155. doi:10.1002/cber.19921250926

    Article  CAS  Google Scholar 

  53. Schwartz MH, Rosenfeld SM, Lee CI, Jasinski JP, Dardon EH (1992) Tetrahedron Lett 33:6275. doi:10.1016/S0040-4039(00)60951-6

    Article  CAS  Google Scholar 

  54. Inokuma S, Gao S-R, Nishimura (1995) J Chem Lett 8:689. doi:10.1246/cl.1995.689

    Article  Google Scholar 

  55. Nakamura Y, Hayashida Y, Wada Y, Nishimura J (1997) Tetrahedron 53:4593. doi:10.1016/S0040-4020(97)00171-3

    Article  CAS  Google Scholar 

  56. Elk SB (1987) J Chem Inf Comput Sci 27:70. doi:10.1021/ci00054a006

    CAS  Google Scholar 

  57. Davis WM, Zask A, Nakanishi K, Lippard SJ (1985) Inorg Chem 24:3737. doi:10.1021/ic00217a009

    Article  CAS  Google Scholar 

  58. Chang MH, Masek BB, Dougherty DA (1985) J Am Chem Soc 107:1124. doi:10.1021/ja00291a007

    Article  CAS  Google Scholar 

  59. Masek BB, Santarsiero BD, Dougherty DA (1987) J Am Chem Soc 109:4373. doi:10.1021/ja00248a039

    Article  CAS  Google Scholar 

  60. Cort AD, Mandolini L, Pasquini C, Schiaffino L (2005) J Org Chem 70:9814. doi:10.1021/jo0515430

    Article  Google Scholar 

  61. Brown AB, Whitlock HW (1989) J Am Chem Soc 111:3640. doi:10.1021/ja00192a023

    Article  CAS  Google Scholar 

  62. Dodzuik H, Leszczynski J, Nowinski KS (1997) J Mol Struct Theochem 391:201. doi:10.1016/S0166-1280(96)04801-4

    Article  CAS  Google Scholar 

  63. Würthwein EU, Chandrasekhar J, Jenmis ED, Schleyer Pv R (1981) Tetrahedron Lett 22:843. doi:10.1016/0040-4039(81)80011-1

    Article  Google Scholar 

  64. Wiberg KB (1985) Tetrahedron Lett 26:5967. doi:10.1016/S0040-4039(00)98273-X

    Article  CAS  Google Scholar 

  65. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford CT

  66. Jensen F (2007) Introduction to computational chemistry. Wiley & Sons, Chichester, UK

    Google Scholar 

  67. Dennington RII, Keith T, Millam J (2007) GaussView, Version 4.1. Semichem, Inc., Shawnee Mission, KS

    Google Scholar 

  68. Dinadayalane TC, Sastry GN (2002) J Chem Soc Perkin Trans 2 11:1902. doi:10.1039/b205663a

    Article  Google Scholar 

  69. Punnagai M, Dinadayalane TC, Sastry GN (2004) J Phys Org Chem 17:152. doi:10.1002/poc.707

    Article  CAS  Google Scholar 

  70. Dinadayalane TC, Punnagai M, Sastry GN (2003) J Mol Struct 626:247

    Article  CAS  Google Scholar 

  71. Geetha K, Dinadayalane TC, Sastry GN (2003) J Phys Org Chem 16:298. doi:10.1002/poc.615

    Article  CAS  Google Scholar 

  72. Leach AG, Houk KN, Reymond J-L (2004) J Org Chem 69:3683. doi:10.1021/jo035669d

    Article  CAS  Google Scholar 

  73. Beno BR, Wilsey S, Houk KN (1999) J Am Chem Soc 121:4816. doi:10.1021/ja9818250

    Article  CAS  Google Scholar 

  74. Tantillo DJ, Lee JK (2007) Annual Rep Prog Chem Sect B Org Chem 103:272

    Article  CAS  Google Scholar 

  75. Wodrich MD, Corminboeuf C, Schreiner PR, Fokin AA, Schleyer PVR (2007) Org Lett 9:1851

  76. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157. doi:10.1021/ar700111a

    Article  CAS  Google Scholar 

  77. Zhang X, Du H, Wang Z, Wu Y-D, Ding K (2006) J Org Chem 71:2862

    Article  CAS  Google Scholar 

  78. Izquierdo M, Osuna S, Filippone S, Martín-Domenech A, Solá M, Martín N (2009) J Org Chem 74:1480

    Google Scholar 

  79. Wieczorek R, Dannenberg JJ (2008) J Phys Chem B 112:1320. doi:10.1021/jp077527j

    Article  CAS  Google Scholar 

  80. Wieczorek R, Dannenberg JJ (2005) J Am Chem Soc 127:14534. doi:10.1021/ja053839t

    Article  CAS  Google Scholar 

  81. Koblenz TS, Wassenaar J, Reek JNH (2008) Chem Soc Rev 37:247. doi:10.1039/b614961h

    Article  CAS  Google Scholar 

  82. Clennan EL, Pace A (2005) Tetrahedron 61:6665. doi:10.1016/j.tet.2005.04.017

    Article  CAS  Google Scholar 

  83. Natarajan A, Kaanumalle LS, Gibb SJ, Gibb BC, Turro NJ, Ramamurthy V (2007) J Am Chem Soc 129:4132. doi:10.1021/ja070086x

    Article  CAS  Google Scholar 

  84. Greer A (2007) Nature 447:273. doi:10.1038/447273a

    Article  CAS  Google Scholar 

  85. Chin KK, Trevithick-Sutton CC, McCallum J, Jockusch S, Turro NJ, Scaiano JC, Foote CS, Garcia-Garibay MA (2008) J Am Chem Soc 130:6912. doi:10.1021/ja800926v

    Article  CAS  Google Scholar 

  86. Cojocaru B, Laferriére M, Carbonell E, Parvulescu V, García H, Scaiano JC (2008) Langmuir 24:4478. doi:10.1021/la800441n

    Article  CAS  Google Scholar 

  87. Jockusch S, Sivaguru J, Turro NJ, Ramamurthy V (2005) Photochem Photobiol Sci 4:403. doi:10.1039/b501701g

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the NIH (S06 GM076168-01) and the PSC-CUNY Grants Program for support. Computational support was provided by the CUNY Graduate Center computational facility. We thank Prof. Mark Kobrak for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Greer.

Additional information

Dedicated to István Hargittai for his first twenty years at Structural Chemistry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castillo, A., Greer, A. Theoretical studies of a singlet oxygen-releasing dioxapaddlane (1,4-diicosa naphthalene-1,4-endoperoxide). Struct Chem 20, 399–407 (2009). https://doi.org/10.1007/s11224-009-9424-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-009-9424-1

Keywords

Navigation