Skip to main content
Log in

Theoretical modeling of the mechanism of aniline oxidation by singlet O2

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The mechanism of aniline oxidation by singlet oxygen was studied by the DFT-PBE/L2 method. According to the calculations, aniline endoperoxide cannot participate in the reaction because of its energy instability. The addition of 1O2 to aniline proceeds with the simultaneous proton transfer to the oxygen molecule from the NH2 group (for the syn-approach of oxygen) or from the aromatic ring (for the anti-approach). For the syn-approach of the 1O2 molecule, the HNC6H4(H)OOH intermediate is formed, whose decomposition leads to aniline p-hydroperoxide (predominantly) or p-iminoquinone. In the case of the anti-approach, the 1O2 molecule is inserted at the C–H bond to form aniline p-hydroperoxide (H2NC6H4OOH). The decomposition of aniline p-hydroperoxide with the formation of p-aminophenol and H2O2 molecule proceeds via concerted mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Patent RF No. 2567552; Byul. Izobr. [Invention Bulletin], 2015, 31 (in Russian).

  2. T. M. Fedorova, L. I. Solovyova, E. N. Shevchenko, A. V. Butenin, E. A. Lukyanets, O. L. Kaliya, Tez. Dokl. III Ross. Kongressa po katalizu "ROSKATALIZ" [Proc. III Russ. Congress on Catalysis "ROSKATALIZ"] (Nizhny Novgorod, May 22–26, 2017), Novosibirsk, Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, 2017, p. 588 (in Russian).

    Google Scholar 

  3. N. A. Kuznetsova, T. M. Fedorova, L. I. Solovyova, E. N. Shevchenko, E. B. Bordaev, R. A. Bulgakov, O. L. Kaliya, E. A. Lukyanets, Macroheterocycles, 2018, 11,21.

    Article  CAS  Google Scholar 

  4. S. H. Chien, M. F. Cheng, K. C. Lau, W. K. Li, J. Phys. Chem. A, 2005, 109, 7509.

    Article  CAS  PubMed  Google Scholar 

  5. J. Al-Nu’airat, M. Altarawneh, X. Gao, P. R. Wetsmoreland, B. Z. Dlugogorski, J. Phys. Chem. A, 2017, 121, 3109.

    Article  CAS  Google Scholar 

  6. K. Briviba, T. P. A. Devasagayam, H. Sies, S. Stnken, Chem. Res. Toxicol., 1993, 6,548.

    Article  CAS  PubMed  Google Scholar 

  7. D. N. Laikov, Chem. Phys. Lett., 1997, 281,151.

    Article  CAS  Google Scholar 

  8. D. N. Laikov, Yu. A. Ustynyuk, Russ. Chem. Bull., 2005, 54,820.

    Article  CAS  Google Scholar 

  9. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.

    Article  CAS  Google Scholar 

  10. D. N. Laikov, Chem. Phys. Lett., 2005, 416,116.

    Article  CAS  Google Scholar 

  11. L. G. Gagliardi, C. B. Castells, C. Ràfols, M. Rosés, E. Bosch, J. Chem. Eng. Data, 2007, 52, 1103.

    Article  CAS  Google Scholar 

  12. K. Yamaguchi, F. Jensen, A. Dorigo, K. N. Houk, Chem. Phys. Lett., 1988, 149,537.

    Article  CAS  Google Scholar 

  13. T. Saito, S. Nishihara, Y. Katayoka, Y. Nikanishi, T. Matsui, Y. Kitagawa, T. Kawakami, M. Okumura, K. Yamaguchi, Chem. Phys. Lett., 2009, 483,168.

    Article  CAS  Google Scholar 

  14. E. Lissi, M. Encinas, E. Lemp, M. Rubio, Chem. Rev., 1993, 93,699.

    Article  CAS  Google Scholar 

  15. I. Saito, T. Matsura, K. Inoue, J. Am. Chem. Soc., 1981, 103,188.

    Article  CAS  Google Scholar 

  16. M. Schäfer-Ridder, U. Brocker, E. Vogel, Angew. Chem., Int. Ed. Engl., 1976, 15,228.

    Article  Google Scholar 

  17. N. Turro, M. F. Chow, J. Am. Chem. Soc., 1981, 103, 7218.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Shamsiev.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1567–1572, September, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsiev, R.S., Kaliya, O.L. & Flid, V.R. Theoretical modeling of the mechanism of aniline oxidation by singlet O2. Russ Chem Bull 67, 1567–1572 (2018). https://doi.org/10.1007/s11172-018-2259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-018-2259-4

Key words

Navigation