Skip to main content
Log in

Effects of different GIAO and CSGT models and basis sets on 2-aryl-1,3,4-oxadiazole derivatives

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The direct molecular structure implementations of the gage-including atomic orbital (GIAO), individual gages for atoms in molecules (IGAIM) and continuous set of gage transformations (CSGT) methods for calculating nuclear magnetic shielding tensors at both the Hartree-Fock (HF) and density functional (B3LYP) levels of theory with 6-31G(d), 6-311G(d), 6-31++G(d,p), 6-311++G(d,p), and 6-311++G(df,pd) basis sets are presented. Dependence on the 1H and 13C NMR chemical shifts on the choice of method and basis set have been investigated. Also, these chemical shifts of 2-aryl-1,3,4-oxadiazoles 5a–g have been performed related to dihedral angles (C4–C3–C2–O) of two conformers. The optimized molecular geometries and 1H and 13C chemical shift values of 2-aryl-1,3,4-oxadiazoles 5a–g in the ground state have been obtained. The linear correlation coefficients of 13C NMR chemical shifts for these molecules were given. The new nuclear magnetic shielding tensors of tetramethylsilane (TMS) were calculated. The data of 2-aryl-1,3,4-oxadiazole derivatives display significant molecular structure and NMR analysis. Also, these provide the basis for future design of efficient materials having the 1,3,4-oxadiazole core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tully WR, Gardner CR, Gillespie RJ, Westwood R (1991) J Med Chem 34:2060–2067. doi:10.1021/jm00111a021

    Article  CAS  Google Scholar 

  2. Chen C, Senanayake CH, Bill TJ, Larsen RD, Verhoeven TR, Reider PJ (1994) J Org Chem 59:3738–3741. doi:10.1021/jo00092a046

    Article  CAS  Google Scholar 

  3. Holla BS, Gonsalves R, Shenoy S (2000) Eur J Med Chem 35:267–271. doi:10.1016/S0223-5234(00)00154-9

    Article  CAS  Google Scholar 

  4. Crimmin MJ, O’Hanlon PJ, Rogers NH, Walker GJ (1989) J Chem Soc, Perkin Trans (11):2047–2056. doi:10.1039/p19890002047

  5. Laddi UV, Desai SR, Bennur RS, Bennur SC (2002) Indian J Heterocycl Chem 11:319–322

    CAS  Google Scholar 

  6. Souldozi A, Ramazani A (2007) Tetrahedron Lett 48:1549–1551. doi:10.1016/j.tetlet.2007.01.021

    Article  CAS  Google Scholar 

  7. Liras S, Allen MP, Segelstein BE (2000) Synth Commun 30:437–443. doi:10.1080/00397910008087340

    Article  CAS  Google Scholar 

  8. Brown BJ, Clemens IR, Neesom JK (2000) Synlett 1:131–133

    Google Scholar 

  9. Coppo FT, Evans KA, Graybill TL, Burton G (2004) Tetrahedron Lett 45:3257–3260. doi:10.1016/j.tetlet.2004.02.119

    Article  CAS  Google Scholar 

  10. Brain CT, Paul JM, Loong Y, Oakley PJ (1999) Tetrahedron Lett 40:3275–3278. doi:10.1016/S0040-4039(99)00382-2

    Article  CAS  Google Scholar 

  11. Brain CT, Brunton SA (2001) Synlett 3:382–384

    Google Scholar 

  12. Emmerling F, Orgzall I, Reck G, Schulz BW, Stockhause S, Schulz B (2006) J Mol Struct 800:74–84. doi:10.1016/j.molstruc.2006.03.076

    Article  CAS  Google Scholar 

  13. Masraqui SH, Kenny RS, Ghadigaonkar SG, Krishnan A, Bhattacharya M, Das PK (2004) Opt Mater 27:257–260. doi:10.1016/j.optmat.2004.04.006

    Article  Google Scholar 

  14. Zhang X, Tang B, Zhang P, Li M, Tian W (2007) J Mol Struct 846:55–64. doi:10.1016/j.molstruc.2007.01.032

    Article  CAS  Google Scholar 

  15. Casanovas J, Namba AM, Leon S, Aquino GKB, da Silva GVJ, Aleman C (2001) J Org Chem 66:3775–3782. doi:10.1021/jo0016982

    Article  CAS  Google Scholar 

  16. Sebag AB, Forsyth DA, Plante MA (2001) J Org Chem 66:7967–7973. doi:10.1021/jo001720r

    Article  CAS  Google Scholar 

  17. Chesnut DB (1996) Reviews in computational chemistry. VCH Publishers, New York, p 245

    Book  Google Scholar 

  18. de Dios AC (1996) Prog Nucl Magn Reson Spectrosc 29:229–278. doi:10.1016/S0079-6565(96)01029-1

    Article  Google Scholar 

  19. Forsyth DA, Sebag AB (1997) J Am Chem Soc 119:9483–9494. doi:10.1021/ja970112z

    Article  CAS  Google Scholar 

  20. Helgaker T, Jaszunski M, Ruud K (1999) Chem Rev 99:293–352. doi:10.1021/cr960017t

    Article  CAS  Google Scholar 

  21. Ditchfield RJ (1972) Chem Phys 56(11):5688–5691

    CAS  Google Scholar 

  22. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112(23):8251–8260. doi:10.1021/ja00179a005

    Article  CAS  Google Scholar 

  23. Gauss J (1993) J Chem Phys 99:3629–3643. doi:10.1063/1.466161

    Article  CAS  Google Scholar 

  24. Ditchfield R (1974) Mol Phys 27:789–807. doi:10.1080/00268977400100711

    Article  CAS  Google Scholar 

  25. Keith TA, Bader RFW (1992) Chem Phys Lett 94:1–8. doi:10.1016/0009-2614(92)85733-Q

    Article  Google Scholar 

  26. Keith TA, Bader RFW (1993) Chem Phys Lett 210:223–231. doi:10.1016/0009-2614(93)89127-4

    Article  CAS  Google Scholar 

  27. Keith TA, Bader RFW (1993) J Chem Phys 99:3669–3682. doi:10.1063/1.466165

    Article  CAS  Google Scholar 

  28. Bader RFW, Keith TA (1993) J Chem Phys 99:3683–3693. doi:10.1063/1.466166

    Article  CAS  Google Scholar 

  29. Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) J Chem Phys 104(14):5497–5509. doi:10.1063/1.471789

    Article  CAS  Google Scholar 

  30. Cimino P, Gomez-Paloma L, Duca D, Riccio R, Bifulco G (2004) Magn Reson Chem 42:26–33. doi:10.1002/mrc.1410

    Article  Google Scholar 

  31. Friesner RA, Murphy RB, Beachy MD, Ringnalda MN, Pollard WT, Dunietz BD, Cao Y (1996) J Phys Chem A 103(13):1913–1928. doi:10.1021/jp9825157

    Article  Google Scholar 

  32. Rulìsek L, Havlas Z (2003) Int J Quantum Chem 91:504–510. doi:10.1002/qua.10442

    Article  Google Scholar 

  33. Ziegler T (1997) In: Springborg M (ed) Density-functional methods in chemistry and materials science, Wiley: New York, pp 69–103

  34. Avcı D, Atalay Y (2009) Int J Quantum Chem 109:328–341. doi:10.1002/qua.21789

    Article  Google Scholar 

  35. Rauhut G, Puyear S, Wolinski K, Pulay P (1996) J Phys Chem 100(15):6310–6316. doi:10.1021/jp9529127

    Article  CAS  Google Scholar 

  36. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54(2):724–728. doi:10.1063/1.1674902

    Article  CAS  Google Scholar 

  37. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) J Comput Chem 4(3):294–301. doi:10.1002/jcc.540040303

    Article  CAS  Google Scholar 

  38. Frisch MJ, Pople JA (1984) J Chem Phys 80(7):3265–3269. doi:10.1063/1.447079

    Article  CAS  Google Scholar 

  39. Rohlfing CM, Allen LC, Ditchfield R (1984) Chem Phys 87(1):9–15. doi:10.1016/0301-0104(84)85133-2

    Article  CAS  Google Scholar 

  40. Frisch A, Nielsen AB, Holder AJ (2001) Gaussview user manual. Gaussian Inc., Pittsburg

    Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (2001) Gaussian 98, Revision A.9. Gaussian Inc., Pittsburgs PA

    Google Scholar 

  42. Okazaki T, Loali KK (2005) Org Biomol Chem 3:286–294. doi:10.1039/b412043d

    Article  CAS  Google Scholar 

  43. Makarov AY, Bagryanskaya IY, Blockhuys F, Van Alsenoy C, Gatilov YV, Knyazev VV, Maksimov AM, Mikhalina TV, Platonov VE, Shakirov MM, Zibarev AV (2003) Eur J Inorg Chem (1):77–88

  44. Ewing DF (1979) Org Magn Reson 12(9):499–524. doi:10.1002/mrc.1270120902

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Prof. Dr. A. Ramazani for his kind contribution in sending the experimental results of NMR spectra for 2-aryl-1,3,4-oxadiazole derivatives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Atalay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avcı, D., Atalay, Y. Effects of different GIAO and CSGT models and basis sets on 2-aryl-1,3,4-oxadiazole derivatives. Struct Chem 20, 185–201 (2009). https://doi.org/10.1007/s11224-008-9400-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-008-9400-1

Keywords

Navigation