Skip to main content
Log in

Crystallographic and theoretical studies of 4,4′-dimethyl-7,7′-bi([1,2,5]thiadiazolo[3,4-b]pyridylidene)–chloranilic acid (1/1) with intermolecular O–H···N hydrogen bonds and S···O heteroatom interactions

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The molecular and crystal structure of a 1:1 co-crystal of 4,4′-dimethyl-7,7′-bi([1,2,5]thiadiazolo[3,4-b]pyridylidene)–chloranilic acid, (1), has been determined by X-ray diffraction at the monoclinic space group P21/c with cell parameters of a = 8.422(6), b = 7.343(4), c = 16.112(7) Å, β = 104.988(8)°, V = 962.5(10) Å3 and Z = 2. In the crystal structure, two components connect via the intermolecular O–H···N hydrogen bonds [2.804(4) Å] and S···O heteroatom interaction [2.945(3) Å] with R 2 2(7) couplings to form a unique and infinite one-dimensional supramolecular tape structure. The calculations of (1) at the HF/6-31G(d), MP2/6-31G(d), and B3LYP/6-31G(d) levels can almost reproduce X-ray geometry. In addition, the distances of the intermolecular O–H···N and S···O interactions by MP2/6-31G(d) and B3LYP/6-31G(d) levels agree well with those in the crystal. The calculated binding energies corrected BSSE and ZPE are −4.487 (HF), −7.473 (MP2), and −5.640 (B3LYP) kcal/mol. The results suggest that the complex (1) is very stable and the dispersion interaction is significantly important for the attractive intermolecular interaction in (1). The NBO analysis has revealed that the n(N) → σ*(O–H) interaction gives the strongest stabilization to the system and the major interaction for the intermolecular S···O contact is n(O) → σ*(S–N).

Index Abstract

In the crystal structure of the title compound, the molecules are linked by intermolecular O–H···N hydrogen bonds and short S···O heteroatom interactions with R 2 2(7) couplings to construct a unique and infinite one-dimensional supramolecular tape structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, Oxford

    Google Scholar 

  2. Hibbert F, Emsley J (1990) Adv Phys Org Chem 26:255. doi:10.1016/S0065-3160(08)60047-7

    Article  CAS  Google Scholar 

  3. Desiraju GR (1995) Angew Chem Int Ed Engl 34:2311. doi:10.1002/anie.199523111

    Article  CAS  Google Scholar 

  4. Braga D, Grepioni F (eds) (2007) Making crystals by design. Wiley-VCH, Weinheim

    Google Scholar 

  5. Williams JM, Ferraro JR, Thorn RJ, Carlson KD, Geiser U, Wang HH, Kini AM, Whangbo M-H (1992) Organic superconductors (including fullerenes). Prentice Hall, New Jersey

    Google Scholar 

  6. Nalwa HS (ed) (1997) Handbook of organic conductive molecules and polymers, vol 1. Wiley, Chichester

    Google Scholar 

  7. Yamashita Y, Tomura M (1998) J Mater Chem 8:1933. doi:10.1039/a803151g

    Article  CAS  Google Scholar 

  8. Yamashita Y, Ono K, Tomura M, Tanaka S (1997) Tetrahedron 53:10169. doi:10.1016/S0040-4020(97)00356-6

    Article  CAS  Google Scholar 

  9. Yamashita Y, Ono K, Tomura M, Imaeda K (1997) Chem Commun (Camb) 1851. doi:10.1039/a704375i

  10. Zaman MB, Tomura M, Yamashita Y (2000) Org Lett 2:273. doi:10.1021/ol991229q

    Article  CAS  Google Scholar 

  11. Zaman MB, Tomura M, Yamashita Y (2001) J Org Chem 66:5987. doi:10.1021/jo001746i

    Article  CAS  Google Scholar 

  12. Tomura M, Yamashita Y (2008) Anal Sci 24:x31. doi:10.2116/analscix.24.x31

    Article  Google Scholar 

  13. Hadzi D (ed) (1997) Theoretical treatment of hydrogen bonding. Wiley, Chichester

    Google Scholar 

  14. Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, Oxford

    Google Scholar 

  15. Buckingham AD, Fowler PW, Hutson JM (1988) Chem Rev 88:963. doi:10.1021/cr00088a008

    Article  CAS  Google Scholar 

  16. Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94:1887. doi:10.1021/cr00031a008

    Article  CAS  Google Scholar 

  17. Rovira C, Novoa JJ (1999) Chem Eur J 5:3689. doi:10.1002/(SICI)1521-3765(19991203)5:12<3689::AID-CHEM3689>3.0.CO;2-H

    Article  CAS  Google Scholar 

  18. Iwaoka M, Takemoto S, Okada M, Tomoda S (2002) Bull Chem Soc Jpn 75:1611. doi:10.1246/bcsj.75.1611

    Article  CAS  Google Scholar 

  19. Burling FT, Goldstein BM (1993) Acta Crystallogr B 49:738. doi:10.1107/S0108768193000709

    Article  Google Scholar 

  20. Sheldrick GM (2008) Acta Crystallogr A 64:112. doi:10.1107/S0108767307043930

    Article  Google Scholar 

  21. Spek AL (2003) J Appl Cryst 36:7. doi:10.1107/S0021889802022112

    Article  CAS  Google Scholar 

  22. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van J (2006) J Appl Cryst 39:453. doi:10.1107/S002188980600731X

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01. Gaussian Inc., Wallingford, Connecticut

  24. Møller C, Plesset MS (1934) Phys Rev 46:618. doi:10.1103/PhysRev.46.618

    Article  Google Scholar 

  25. Head-Gordon M, Pople JA, Frisch MJ (1988) J Chem Phys Lett 153:503. doi:10.1016/0009-2614(88)85250-3

    Article  CAS  Google Scholar 

  26. Becke D (1993) J Chem Phys 98:5648. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  27. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  28. Jian FF, Zhao PS, Wang QX (2005) Chin J Struct Chem 24:184

    CAS  Google Scholar 

  29. Lyakhov AS, Matulis VE, Gaponik PN, Voitekhovich SV, Ivashkevich OA (2008) J Mol Struct 876:260. doi:10.1016/j.molstruc.2007.06.027

    Article  CAS  Google Scholar 

  30. Boys SF, Bernardi F (1970) Mol Phys 19:53. doi:10.1080/00268977000101561

    Article  Google Scholar 

  31. Reed AE, Weinhold F (1983) J Chem Phys 78:4066. doi:10.1063/1.445134

    Article  CAS  Google Scholar 

  32. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1993) NBO Version 3.1. Theoretical Chemistry Institute, University of Wisconsin, Madison, WI

    Google Scholar 

  33. Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) J Chem Soc Perkin Trans 2:S1. doi:10.1039/p298700000s1

    Google Scholar 

  34. Mellini M, Merlino S (1976) Acta Crystallogr B 32:1074. doi:10.1107/S056774087600469X

    Article  Google Scholar 

  35. Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Angew Chem Int Ed Engl 34:1555. doi:10.1002/anie.199515551

    Article  CAS  Google Scholar 

  36. Weber E (ed) (1998) Design of organic solids. Springer-Verlag, New York

    Google Scholar 

  37. Allen FH (2002) Acta Crystallogr B 58:380. doi:10.1107/S0108768102003890

    Article  Google Scholar 

  38. Laurent G, Durant F (1981) Crystallogr Struct Commun 10:1015

    CAS  Google Scholar 

  39. Verenich AI, Govorova AA, Galitskii NM, Potkin VI, Kaberdin RV, Ol’dekop YA (1992) Khim Get Soedin SSSR 399

  40. Wierzejewska M, Saldyka M (2004) Chem Phys Lett 391:143. doi:10.1016/j.cplett.2004.04.101

    Article  CAS  Google Scholar 

  41. Neuheuser T, Hess BA, Reutel C, Weber E (1994) J Phys Chem 98:6459. doi:10.1021/j100077a007

    Article  CAS  Google Scholar 

  42. Jaffe RL, Smith GD (1996) J Chem Phys 105:2780. doi:10.1063/1.472140

    Article  CAS  Google Scholar 

  43. Meijer EJ, Sprik M (1996) J Chem Phys 105:8684. doi:10.1063/1.472649

    Article  CAS  Google Scholar 

  44. Tsuzuki S, Lüthi HP (2001) J Chem Phys 114:3949. doi:10.1063/1.1344891

    Article  CAS  Google Scholar 

  45. Taylor R, Kennard O (1982) J Am Chem Soc 104:5063. doi:10.1021/ja00383a012

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Instrument Center, Institute for Molecular Science, Okazaki, Japan, for the X-ray crystallographic analysis and Research Center for Computational Science, Okazaki Research Facilities, National Institutes of Natural Sciences, Okazaki, Japan, for the computations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Tomura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomura, M., Ono, K. & Yamashita, Y. Crystallographic and theoretical studies of 4,4′-dimethyl-7,7′-bi([1,2,5]thiadiazolo[3,4-b]pyridylidene)–chloranilic acid (1/1) with intermolecular O–H···N hydrogen bonds and S···O heteroatom interactions. Struct Chem 19, 967–974 (2008). https://doi.org/10.1007/s11224-008-9382-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-008-9382-z

Keywords

Navigation