Skip to main content
Log in

Ab initio and DFT theory studies of interaction of thymine with formaldehyde

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this article, the interaction of formaldehyde (FA) with thymine is theoretically investigated by computational chemistry methods. The optimization geometries and vibrational frequencies of FA, thymine and three complexes between thymine and FA have been calculated by using the density functional theory and ab initio methods at the B3LYP/6-311G(d, p) and MP2/6-311G(d, p) levels. The NBO and AIM methods are used to analyse interaction as well. Conformers (A), (B) and (C) are cyclic structures with C–H***O and N–H***O hydrogen bonds on a common plane. The corrected complex interaction energies of cyclic structures (A), (B) and (C) at MP2/6-311G(d, p) levels are −38.41, −26.94 and −26.01 kJ/mol, respectively. The order of stability is (A) > (B) > (C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Friesner RA, Beachy MD (1998) Curr Opin Struct Biol 8:257. doi:10.1016/S0959-440X(98)80048-1

    Article  CAS  Google Scholar 

  2. Ahmed D, Ludwik A, Guido M (2000) Chem Phys Lett 127:324

    Google Scholar 

  3. Takhashi O, Kohno Y, Saito K (2003) Chem Phys Lett 509:378

    Google Scholar 

  4. Liu T, Gu JD, Tian XJ, Zhu WL, Luo XM, Jiang HL et al (2001) J Phys Chem A 105:5431. doi:10.1021/jp003098c

    Article  CAS  Google Scholar 

  5. Tarakeshwar P, Lee SJ, Lee JY, Kim KS (1999) J Phys Chem B 103:184. doi:10.1021/jp9833810

    Article  CAS  Google Scholar 

  6. Reynisson J, Steenken S (2003) J Mol Struct Theochem 133:635

    Google Scholar 

  7. Meng F, Bu YC, Liu C (2002) Acta Chimi Sin 60:7

    CAS  Google Scholar 

  8. Skoufias DA, Mollinari C, Lacroix FB, Margolis R (2000) J Cell Biol 151:1575–1582. doi:10.1083/jcb.151.7.1575

    Article  CAS  Google Scholar 

  9. Takigawa T, Horike T, Ohashi Y, Kataoka H, Wang DH, Kira S (2004) Environ Toxicol 19:280–290. doi:10.1002/tox.20035

    Article  CAS  Google Scholar 

  10. Malek FA, Moritz KU, Fanghang J (2003) Ann Anat 185:277–285. doi:10.1016/S0940-9602(03)80040-7

    Article  CAS  Google Scholar 

  11. Zarasiz I, Kus I, Akpolat N, Songur A, Ogeturk M (2006) Cell Biochem Funct 24:237–244. doi:10.1027/cbf.1204

    Article  Google Scholar 

  12. Nalivaiko E, De Pasquale CG, Blessing WW (2003) Auton Neurosci 105:101–104. doi:10.1016/S1566-0702(03)00048-1

    Article  CAS  Google Scholar 

  13. Mautz WJ (2003) Environ Res 92:14–26. doi:10.1016/S0013-9351(02)00024-5

    Article  CAS  Google Scholar 

  14. Tyihak E, Bocsi J, Timar F (2001) Cell Prolif 34:135–141. doi:10.1046/j.1365-2184.2001.00206.x

    Article  CAS  Google Scholar 

  15. Emri G, Schaefer D, Held B, Herbst C, Zieger W, Horkay I (2004) Exp Dermatol 13:305–315. doi:10.1111/j.0906-6705.2004.00157.x

    Article  CAS  Google Scholar 

  16. Lin Z, Luo W, Li H et al (2005) Toxicol Lett 1592:134–143. doi:10.1016/j.toxlet.2005.05.003

    Article  CAS  Google Scholar 

  17. Becker AD, Rauk A (1977) Phys Rev 46:1

  18. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785. doi:10.1103/PhysRevB.37.785

  19. Stevens PJ, Devlin FJ, Chablowski CF, Frisch MJ (1994) J Phys Chem 98:11623. doi:10.1021/j100096a001

    Google Scholar 

  20. Biegler-Konig F, Schonbohm J, Bayles D (2001) J Comput Chem 22:545. doi:10.1002/1096-987X(20010415)22:5<545::AID-JCC1027>3.0.CO;2-Y

    Article  Google Scholar 

  21. Boys SF, Bernardi F (1970) Mol Phys 19:553. doi:10.1080/00268977000101561

    Article  CAS  Google Scholar 

  22. Bader RFW (1990) Atoms in molecules. A quantum theory. Clarendon, Oxford

    Google Scholar 

  23. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899. doi:10.1021/cr00088a005

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE (2003) Gaussian 03, revision B.03. Gaussian Inc., Pittsburgh

  25. Xu X, Goddard WAIII (2004) Proc Natl Acad Sci USA 101:2673. doi:10.1073/pnas.0308730100

    Article  CAS  Google Scholar 

  26. Rappe AK, Bernstein ER (2000) J Phys Chem A 104:6117. doi:10.1021/jp0008997

    Article  CAS  Google Scholar 

  27. Gur’yanova N, Gol’dshtein IP, Romm IP (1975) The donor–acceptor bond. Wiley, New York

    Google Scholar 

  28. Garura C, Frontera A, Quiñonero D, Ballester P, Costa A, Deyá PM (2003) Chem Phys Chem 4:1344. doi:10.1002/cphc.200300886

    Google Scholar 

  29. Schwenke DW, Truhlar DG (1985) J Chem Phys 82:2418. doi:10.1063/1.448335

    Google Scholar 

  30. Gutowski M, Chalasinski G (1993) J Chem Phys 98:4728. doi:10.1063/1.465106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C., Wang, H. Ab initio and DFT theory studies of interaction of thymine with formaldehyde. Struct Chem 19, 843–847 (2008). https://doi.org/10.1007/s11224-008-9374-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-008-9374-z

Keywords

Navigation