Skip to main content
Log in

Linear and non-linear optical properties of some donor–acceptor oxadiazoles by ab initio Hartree-Fock calculations

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The molecular hyperpolarizability of some donor–acceptor oxadiazoles was investigated using ab initio methods. Ab initio optimizations were performed at the Hartree-Fock level using different basis sets, starting with the minimal basis set, and then split valence sets. The first hyperpolarizabilities were calculated at the Hartree-Fock level employing the corresponding basis sets using Gaussian 98W. In general, the first hyperpolarizability is dependent on the choice of method and basis set. In order to understand this phenomenon in the context of molecular orbital picture, we examined the molecular HOMOs and molecular LUMOs generated via HF/6-31G level. It has also been calculated the polarizability, anisotropy of polarizability and ground state dipole moment of all the molecules. Several of these oxadiazoles display significant second-order molecular nonlinearity, β(8.57–195.05 × 10−30 esu) and provide the basis for future design of efficient nonlinear optical materials having the oxadiazole core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kanis DR, Ratner MA, Marks TJ (1994) Chem Rev 94:195

    Article  CAS  Google Scholar 

  2. Prasad PN, Williams DJ (1991) Introduction to nonlinear optical effects in molecules and polymers. Wiley, New York

    Google Scholar 

  3. Masraqui SH, Kenny RS, Ghadigaonkar SG, Krishnan A, Bhattacharya M, Das PK (2004) Opt Mater 27:257

    Article  Google Scholar 

  4. Marder SR, Cheng L-T, Tiemann BG, Friedli AC, Blanchard-Desce M, Perry JW, Skindhoj J (1994) Science 263:511

    Article  CAS  Google Scholar 

  5. Blanchard-Desce M, Runser C, Fort A, Barzoukas M, Lehn J-M, Ploy V, Alain V (1995) Chem Phys 199:253

    Article  CAS  Google Scholar 

  6. Cheng L-T, Tam W, Stevenson SH, Meredith GR, Rikken G, Marder SR (1991) J Phys Chem 95:10631

    Article  CAS  Google Scholar 

  7. Moylan CR, Twieg RJ, Lee VY, Swanson SA, Betterton KM, Miller RD (1993) J Am Chem Soc 115:12599

    Article  CAS  Google Scholar 

  8. Cheng L-T, Tam W, Marder SR, Stiegman AE, Rikken G, Spangler CW (1991) J Phys Chem 95:10643

    Article  CAS  Google Scholar 

  9. Rao VP, Cai YM, Jen AKY (1994) Chem Commun 1689

  10. Rao VP, Jen AKY, Wong KY, Drost KJ (1993) Chem Commun 1118

  11. Rice JE, Handy NC (1991) J Chem Phys 94:4959

    Article  CAS  Google Scholar 

  12. Li H, Han K, Shen X, Lu Z, Huang Z, Zhang W, Zhang Z, Bai LJ (2006) Mol Strut (Theochem) 767:117

    Google Scholar 

  13. Karna SP, Prasad PN, Dupuis M (1991) J Chem Phys 94:1171

    Article  CAS  Google Scholar 

  14. Clays K, Coe BJ (2003) Chem Mater 15:642

    Article  CAS  Google Scholar 

  15. Srinivas K, Sitha S, Rao VJ, Bhanuprakash K (2006) Opt Mater 28:1006

    Article  CAS  Google Scholar 

  16. Oudar JL, Chemla DS (1977) J Chem Phys 66:2664

    Article  CAS  Google Scholar 

  17. Oudar JL (1977) J Chem Phys 67:446

    Article  CAS  Google Scholar 

  18. Kurtz HA, Stewart JJP, Dieter KM (1990) J Comput Chem 11:82

    Article  CAS  Google Scholar 

  19. Hurst GJB, Dupuis M, Clementi E (1988) J Chem Phys 89:385

    Article  CAS  Google Scholar 

  20. Willetts A, Rice JE, Burland DM, Shelton DP (1992) J Chem Phys 97:7590

    Article  CAS  Google Scholar 

  21. Levine BF, Bethea CG (1974) Appl Phys Lett 24:445

    Article  CAS  Google Scholar 

  22. Levine BF, Bethea CG (1975) J Chem Phys 63:2666

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (2001) Gaussian 98, Revision A. 9. Gaussian Inc., Pittsburgh, PA

    Google Scholar 

  24. Frisch A, Nielsen AB, Holder AJ (2001) Gaussview user manual. Gaussian Inc, Pittsburg

    Google Scholar 

  25. Zyss J, Ledoux I (1994) Chem Rev 94:77

    Article  CAS  Google Scholar 

  26. Jeewandara AK, de Silva KMN (2004) J Mol Strut (Theochem) 686:131

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank Sakarya University for financial support (P.N: 5002052-BAP)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Atalay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atalay, Y., Avcı, D. & Başoğlu, A. Linear and non-linear optical properties of some donor–acceptor oxadiazoles by ab initio Hartree-Fock calculations. Struct Chem 19, 239–246 (2008). https://doi.org/10.1007/s11224-007-9278-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-007-9278-3

Keywords

Navigation