Skip to main content
Log in

DFT studies on D–π–A substituted bis-1,3,4-oxadiazole for nonlinear optical application

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In the present work, we have synthesized novel D–π–A substituted bis-1,3,4-oxadiazoles derivatives and studied nonlinear optical properties using density functional theory (DFT). The FT-IR and 1H NMR data confirmed the structure of the molecule. The HOMO–LUMO, energy band gap, molecular electrostatic potential map, and global chemical reactivity descriptors were estimated using the DFT and TD-DFT with B3LYP, CAM-B3LYP and WB97XD using 6-31G (d) levels basis set and results show all synthesized molecules have excellent chemical hardness, chemical potential, excellent chemical strength, and excellent chemical stability. The static and dynamic linear polarizability, first hyperpolarizability and second hyperpolarizability components were estimated using time-dependent density functional theory. The first-order hyperpolarizability β (2x; x, x) computed at a wavelength of 1064 nm was found to be 55 times greater than the urea molecule. The dynamic molecular second-order hyperpolarizabilities γ (−3x;x,x,x) suggested good nonlinear properties for the designed molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

All data set can be accessed. Appropriate permission for images is given.

References

  1. S. Dawbaa, D. Nuha, A.E. Evren, M.Y. Cankiliç, L. Yurttaş, G. Turan, New oxadiazole/triazole derivatives with antimicrobial and antioxidant properties. J. Mol. Struct.Struct. 1282, 135213 (2023). https://doi.org/10.1016/j.molstruc.2023.135213

    Article  CAS  Google Scholar 

  2. K.K. Jha, A. Samad, Y. Kumar, M. Shaharyar, R.L. Khosa, J. Jain, P. Singh, Design, synthesis and biological evaluation of 1, 3, 4-oxadiazole derivatives. Eur. J. Med. Chem. 45(11), 4963–4967 (2010). https://doi.org/10.1016/j.ejmech.2010.08.003

    Article  CAS  PubMed  Google Scholar 

  3. M.M.S. Hamoud, N.A. Osman, S. Rezq, H.A.A. Abd El-wahab, A.E.A. Hassan, H.A. Abdel-Fattah, D.G. Romero, A.M. Ghanim, Design and synthesis of novel 1,3,4-oxadiazole and 1,2,4-triazole derivatives as cyclooxygenase-2 inhibitors with anti-inflammatory and antioxidant activity in LPS-stimulated RAW264.7 macrophages. Bioorg. Chem.. Chem. 124, 105808 (2022). https://doi.org/10.1016/j.bioorg.2022.105808

    Article  CAS  Google Scholar 

  4. B.W. Matore, P. Banjare, T. Guria, P.P. Roy, J. Singh, Oxadiazole derivatives: Histone deacetylase inhibitors in anticancer therapy and drug discovery. Eur. J. Med. Chem. Rep. 5, 100058 (2022). https://doi.org/10.1016/j.ejmcr.2022.100058

    Article  CAS  Google Scholar 

  5. G. Grover, R. Pal, R. Bhatia, M.S. Yar, R. Nath, S. Singh, K. Raj, B. Kumar, M.J. Akhtar, Design, synthesis, and pharmacological evaluation of aryl oxadiazole linked 1,2,4-triazine derivatives as anticonvulsant agents. Med. Chem. Res. 31, 781 (2022). https://doi.org/10.1007/s00044-022-02880-4

    Article  CAS  Google Scholar 

  6. Y. Dai, J.A. Santiago-Rivera, S. Hargett, J.M. Salamoun, K.L. Hoehn, W.L. Santos, Conversion of oxadiazolo[3,4-b]pyrazines to imidazo[4,5-b]pyrazines via a tandem reduction-cyclization sequence generates new mitochondrial uncouplers. Bioorg. Med. Chem. Lett.. Med. Chem. Lett. 73, 128912 (2022). https://doi.org/10.1016/j.bmcl.2022.128912

    Article  CAS  Google Scholar 

  7. S. Baykov, A. Semenov, M. Tarasenko, V.P. Boyarskiy, Application of amidoximes for the heterocycles synthesis. Tetrahedron Lett. 61, 152403 (2020). https://doi.org/10.1016/j.tetlet.2020.152403

    Article  CAS  Google Scholar 

  8. N.M. Aljamali, Survey on methods of preparation and cyclization of heterocycles. Int. J. Chem. Mol. Eng. 6(2), 19–36 (2020)

    Google Scholar 

  9. Q. Bian, C. Wu, J. Yuan, Z. Shi, T. Ding, Y. Huang, H. Xu, Y. Xu, Iron nitrate-mediated selective synthesis of 3-Acyl-1,2,4-oxadiazoles from alkynes and nitriles: the dual roles of iron nitrate. J. Org. Chem. 85, 4058 (2020). https://doi.org/10.1021/acs.joc.9b03070

    Article  CAS  PubMed  Google Scholar 

  10. M.S. Thippeswamy, L. Naik, C.V. Maridevarmath, G.H. Malimath, A comprehensive studies on photophysical and electrochemical properties of novel D-π-A thiophene substituted 1,3,4-oxadiazole derivatives for optoelectronic applications: a computational and experimental approach. Chem. Phys. 550, 111301 (2021). https://doi.org/10.1016/j.chemphys.2021.111301

    Article  CAS  Google Scholar 

  11. M.C. Scharber, N.S. Sariciftci, Low band gap conjugated semiconducting polymers. Adv. Mater. Technol. 6, 2000853 (2021). https://doi.org/10.1002/admt.202000857

    Article  CAS  Google Scholar 

  12. Y.N. Luponosov, J. Min, A.N. Solodukhin, O.V. Kozlov, M.A. Obrezkova, S.M. Peregudova, T. Ameri, S.N. Chvalun, M.S. Pshenichnikov, C.J. Brabec, S.A. Ponomarenko, Effects of electron-withdrawing group and electron-donating core combinations on physical properties and photovoltaic performance in D-π-A star-shaped small molecules. Org. Electron. 32, 157 (2016). https://doi.org/10.1016/j.orgel.2016.02.027

    Article  CAS  Google Scholar 

  13. J. Min, Y.N. Luponosov, C. Cui, B. Kan, H. Chen, X. Wan, C.J. Brabec, Evaluation of electron donor materials for solution-processed organic solar cells via a novel figure of merit. Adv. Energy Mater. 7(18), 1700465 (2017). https://doi.org/10.1002/aenm.201700465

    Article  CAS  Google Scholar 

  14. Z. Qin, C. Gao, W.W. Wong, M.K. Riede, T. Wang, H. Dong, W. Hu, Molecular doped organic semiconductor crystals for optoelectronic device applications. J. Mater. Chem. C 8(43), 14996–15008 (2020). https://doi.org/10.1039/d0tc02746d

    Article  CAS  Google Scholar 

  15. S.H. Lee, B.J. Kang, J.S. Kim, B.W. Yoo, J.H. Jeong, K.H. Lee, M. Jazbinsek, J.W. Kim, H. Yun, J. Kim, Y.S. Lee, F. Rotermund, O.P. Kwon, New acentric core structure for organic electrooptic crystals optimal for efficient optical-to-THz conversion. Adv. Opt. Mater. 3, 756 (2015). https://doi.org/10.1002/adom.201400502

    Article  CAS  Google Scholar 

  16. R.N. Rai, K.B.R. Varma, Growth and characterization of single crystal of pentachloropyridine. J. Cryst. GrowthCryst. Growth. 285, 111 (2005). https://doi.org/10.1016/j.jcrysgro.2005.08.012

    Article  ADS  CAS  Google Scholar 

  17. V. Crasta, V. Ravindrachary, S. Lakshmi, S.N. Pramod, M.A. Shridar, J.S. Prasad, Growth, characterization and crystal structure analysis of 1-(4-chlorophenyl)-3-(4-chlorophenyl)-2-propen-1-one. J. Cryst. GrowthCryst. Growth (2005). https://doi.org/10.1016/j.jcrysgro.2004.10.110

    Article  Google Scholar 

  18. S.H. Lee, M. Jazbinsek, C.P. Hauri, O.P. Kwon, Recent progress in acentric core structures for highly efficient nonlinear optical crystals and their supramolecular interactions and terahertz applications. CrystEngComm 18(38), 7180–7203 (2016). https://doi.org/10.1039/c6ce00707d

    Article  CAS  Google Scholar 

  19. X. Liu, Z. Yang, D. Wang, H. Cao, Molecular structures and second-order nonlinear optical properties of ionic organic crystal materials. Crystals 6, 158 (2016). https://doi.org/10.3390/cryst6120158

    Article  CAS  Google Scholar 

  20. M. Imran, M. Khalid, R. Jawaria, A. Ali, M.A. Asghar, Z. Shafiq, A.A.C. Braga, Exploration of photophysical and nonlinear properties of salicylaldehyde-based functionalized materials: a facile synthetic and DFT approach. ACS Omega 6(49), 33914–33922 (2021). https://doi.org/10.1021/acsomega.1c04984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. S. Aslam, M. Haroon, T. Akhtar, M. Arshad, M. Khalid, Z. Shafiq, M. Imran, A. Ullah, Synthesis, characterization, and DFT-based electronic and nonlinear optical properties of methyl 1-(arylsulfonyl)-2-aryl-1H-benzo[d]imidazole-6-carboxylates. ACS Omega 7, 31036 (2022). https://doi.org/10.1021/acsomega.2c02805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. N. Arif, Z. Shafiq, S. Noureen, M. Khalid, A. Ashraf, M. Yaqub, S. Irshad, M.U. Khan, M.N. Arshad, A.A. Carmo Braga, A.H. Ragab, S.R. Al-Mhyawi, Synthesis, spectroscopic, SC-XRD/DFT and non-linear optical (NLO) properties of chromene derivatives. RSC Adv. 13, 464 (2022). https://doi.org/10.1039/d2ra07134g

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. N. Kaippamangalath, U. Gopalakrishnapanicker, Synthesis and evaluation of properties of poly(p-phenylenevinylene) based 1,3,4-oxadiazole systems for optoelectronics and nonlinear optical applications. Polym. Int.. Int. 65, 1221 (2016). https://doi.org/10.1002/pi.5183

    Article  CAS  Google Scholar 

  24. M. Homocianu, A. Airinei, C. Hamciuc, A.M. Ipate, Nonlinear optical properties (NLO) and metal ions sensing responses of a polymer containing 1,3,4-oxadiazole and bisphenol A units. J. Mol. Liq. 281, 141 (2019). https://doi.org/10.1016/j.molliq.2019.02.065

    Article  CAS  Google Scholar 

  25. M.S.S. Oliveira, A.B.S. Santos, T.V.B. Ferraz, G.L.C. Moura, E.H.L. Falcão, Non-symmetrical 1,3,4-oxadiazole derivatives: synthesis, characterization, and computational study of their optical properties. Chem. Phys. Impact 6, 100162 (2023). https://doi.org/10.1016/j.chphi.2023.100162

    Article  Google Scholar 

  26. F.A.M. Al-Omary, Y.S. Mary, C.Y. Panicker, A.A. El-Emam, I.A. Al-Swaidan, A.A. Al-Saadi, C. Van Alsenoy, Spectroscopic investigations, NBO, HOMO-LUMO, NLO analysis and molecular docking of 5-(adamantan-1-yl)-3-anilinomethyl-2,3-dihydro-1,3,4-oxadiazole-2-thione, a potential bioactive agent. J. Mol. Struct.Struct. 1096, 1 (2015). https://doi.org/10.1016/j.molstruc.2015.03.049

    Article  ADS  CAS  Google Scholar 

  27. Y. Atalay, D. Avcı, A. Başoğlu, Linear and non-linear optical properties of some donor-acceptor oxadiazoles by ab initio Hartree-Fock calculations. Struct. Chem.. Chem. 19, 239 (2008). https://doi.org/10.1007/s11224-007-9278-3

    Article  CAS  Google Scholar 

  28. K. Raghavachari, Perspective on “density functional thermochemistry. III. The role of exact exchange” - Becke AD(1993). J. Chem. Phys. 98, 5648 (2000)

    Google Scholar 

  29. B. Miehlich, A. Savin, H. Stoll, H. Preuss, Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 157(3), 200–206 (1989). https://doi.org/10.1016/0009-2614(89)87234-3

    Article  ADS  CAS  Google Scholar 

  30. F. Zutterman, V. Liegeos, B. Champagne, Simulation of UV/visible absorption spectra of fluorescent protein chromophore models. ChemPhotoChem 1, 281 (2017). https://doi.org/10.1002/cptc.201700002

    Article  CAS  Google Scholar 

  31. N. Sekar, S. Katariya, L. Rhyman, I.A. Alswaidan, P. Ramasami, Molecular and NLO properties of red flourescent coumarins-DFT computaions using long-range separated and conventional functionals. J. Fluoresc.Fluoresc. 29, 241 (2018). https://doi.org/10.1007/s10895-018-2333-1

    Article  Google Scholar 

  32. K. Avhad, A. Jadhav, N. Sekar, Fluorescent vinyl and styryl coumarins: a comprehensive DFT study of structural, electronic and NLO properties. J. Chem. Sci. 129, 1829–1841 (2017). https://doi.org/10.1007/s12039-017-1392-1

    Article  CAS  Google Scholar 

  33. J. Paier, M. Marsman, G. Kresse, Why does the B3LYP hybrid functional fail for metals? J. Chem. Phys. (2007). https://doi.org/10.1063/1.2747249

    Article  PubMed  Google Scholar 

  34. T. Yanai, D.P. Tew, N.C. Handy, A new hybrid exchange-correlation functional using the coulomb-attenuated method (CAM-B3LYP). Chem. Phys. Lett. 393, 51 (2004). https://doi.org/10.1016/j.cplett.2004.06.011

    Article  ADS  CAS  Google Scholar 

  35. T. Korzdorfer, J.S. Sears, C. Sutton, J. Bredas, Long-range corrected hybrid functionals for π-conjugated systems: dependence of range-separation parameter on conjugation length. J. Chem. Phys. (2011). https://doi.org/10.1063/1.3663856

    Article  PubMed  Google Scholar 

  36. R.S. Bhatta, G. Pellicane, M. Tsige, Tuning range-separated DFT functionals for accurate orbital energy modeling of conjugated molecules. Comput. Theor. Chem.. Theor. Chem. 1070, 14 (2015). https://doi.org/10.1016/j.comptc.2015.07.022

    Article  CAS  Google Scholar 

  37. L. Pandey, C. Doiron, J.S. Sears, J.L. Brédas, Lowest excited states and optical absorption spectra of donor–acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals. Phys. Chem. Chem. Phys. 14(41), 14243–14248 (2012). https://doi.org/10.1039/C2CP41724C

    Article  CAS  PubMed  Google Scholar 

  38. J. Chai, M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615 (2008). https://doi.org/10.1039/B810189B

    Article  CAS  PubMed  Google Scholar 

  39. C.J. Collison, L.J. Rothberg, V. Treemaneekarn, Y. Li, Conformational effects on the dynamics. Macromolecules 34, 2346–2352 (2001). https://doi.org/10.1021/ma001354d

    Article  ADS  CAS  Google Scholar 

  40. Z. Zhu, L. Zhang, S. Smith, H. Fong, Y. Sun, D. Gosztola, Fluorescence studies of electrospun MEH-PPV/PEO nanofibers. Synth. Met. 159, 1454 (2009). https://doi.org/10.1016/j.synthmet.2009.03.025

    Article  CAS  Google Scholar 

  41. H. Hirao, Which DFT functional performs well in the calculation of methylcobalamin? Comparison of B3LYP and BP86 functionals and evaluation of the impact of empirical dispersion correction. J. Phys. Chem. A 115, 9308 (2011). https://doi.org/10.1021/jp2052807

    Article  CAS  PubMed  Google Scholar 

  42. S. Nenon, B. Champagne, M.I. Spassova, Assessing long-range corrected functionals with physically-adjusted range-separated parameters for calculating the polarizability and second hyperpolarizability of polydiacetylene and polybutatriene chains. Phys. Chem. Chem. Phys. 16, 7083 (2014). https://doi.org/10.1039/C4CP00105B

    Article  CAS  PubMed  Google Scholar 

  43. G.H. Cross, D. Bloor, T.L. Axon, M. Farsari, D. Gray, D. Healy, M. Swann, M. Szablewski, High-dipole, high-beta molecules with blue window transparency. Nonlinear Opt. Prop. Org. Mater. VII (1994). https://doi.org/10.1117/12.187541

    Article  Google Scholar 

  44. P.J. Mendes, A.J.P. Carvalho, J.P.P. Ramalho, Role played by the organometallic fragment on the first hyperpolarizability of iron-acetylide complexes: a TD-DFT study. J. Mol. Struct.: THEOCHEM. 900, 110 (2009). https://doi.org/10.1016/j.theochem.2008.12.037

    Article  CAS  Google Scholar 

  45. Parr, R. G.; Yang, W. The Kohn-Sham method: basic principles. In Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989; pp 142–168.

  46. L. Naik, M.S. Thippeswamy, V. Praveenkumar, G.H. Malimath, D. Ramesh, S. Sutar, H.M. Savanur, S.B. Gudennavar, S.G. Bubbly, Solute-solvent interaction and DFT studies on bromonaphthofuran 1,3,4-oxadiazole fluorophores for optoelectronic applications. J. Mol. Graph. Model. 118, 108367 (2023). https://doi.org/10.1016/j.jmgm.2022.108367

    Article  CAS  PubMed  Google Scholar 

  47. L. Naik, C.V. Maridevarmath, I.A.M. Khazi, G.H. Malimath, Photophysical and computational studies on optoelectronically active thiophene substituted 1,3,4-oxadiazole derivatives. J. Photochem. Photobiol. A Chem. 368, 200 (2019). https://doi.org/10.1016/j.jphotochem.2018.09.038

    Article  CAS  Google Scholar 

Download references

Acknowledgements

First author Mr. Sikandar is grateful to the MSRUAS Bengaluru, India, for providing laboratory and characterization facilities. These thanks are extended to researchers supporting project number (RSP2024R348), King Saud University, Riyadh, Saudi Arabia.

Funding

Research supporting project number (RSP2024R348), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

SHD: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Resources; Software; Supervision; Validation; Visualization; Roles/Writing—original draft; Writing—review & editing. SAH: Conceptualization; Data curation; Methodology; Resources; SS: Data curation, BAA-A: Methodology; Resources; Software; Supervision; Validation; Visualization; Roles/Writing—original draft; Writing—review & editing. NMA-H: Methodology; Resources; Software; Supervision; Validation; Visualization; Roles/Writing—original draft; Writing—review & editing. VMS: Conceptualization; Data curation; Formal analysis; Investigation; Resources; Software; Supervision; Validation; Visualization; Roles/Writing—original draft; Writing—review & editing. LN: Conceptualization; Data curation; Formal analysis; Investigation; Resources; Software; Supervision; Validation; Visualization; Roles/Writing—original draft; Writing—review & editing.

Corresponding authors

Correspondence to Vikas M. Shelar or Lohit Naik.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

It is not applicable for both human and/ or animal studies.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

I hereby grant my consent for the publication of the content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1127 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhannur, S.H., Shridhar, A.H., Suresh, S. et al. DFT studies on D–π–A substituted bis-1,3,4-oxadiazole for nonlinear optical application. J Opt (2024). https://doi.org/10.1007/s12596-024-01698-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01698-0

Keywords

Navigation