Skip to main content
Log in

A DFT study of molecular structures and tautomerizations of 2-benzoylpyridine semicarbazone and picolinaldehyde N-oxide thiosemicarbazone and their complexations with Ni(II), Cu(II), and Zn(II)

  • Original Paper
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The structure optimizations of picolinaldehyde N-oxide thiosemicarbazone (Hpiotsc), 2-benzoylpyridine semicarbazone (H2BzPS), their imino tautomers and their complexes with Ni(II), Cu(II), and Zn(II) were carried out using DFT calculations. The structures of Hpiotsc and H2BzPS ligands, transition states of their tautomerizations were obtained at the B3LYP/6-31+G(d,p) level and their thermodynamic properties were derived from the frequency calculations at the same level of theory. The B3LYP/LANL2DZ-optimized structures of Hpiotsc and H2BzPS complexes with Ni(II), Cu(II), and Zn(II), and the thermodynamic properties of their complexations derived from the B3LYP/LANL2DZ-frequency calculations were obtained. The B3LYP/LANL2DZ-optimized geometrical parameters for the [Ni(Hpiotsc)2]2+, [Cu(Hpiotsc).Cl2], and [Zn(Hpiotsc).Cl2] complexes show good agreement with their corresponding X-ray crystallographic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kolb VM, Stupar JW, Janota TE, Duax WL (1989) J Org Chem 54:2341–2346

    Article  CAS  Google Scholar 

  2. Dimmock JR, McColl JM, Wonko SL, Thayer RS, Hancock DS (1991) J Med Chem 26:529–534

    Article  CAS  Google Scholar 

  3. Dimmock JR, Sidhu KK, Thayer RS, Mack P, Duffy MJ, Reid RS, Quail JW, Pugazhenthi U, Ong A, Bikker JA, Weaver DF (1993) J Med Chem 36:2243–2252

    Article  CAS  Google Scholar 

  4. Dimmock JR, Pandeya SN, Quail JW, Pugazhenthi U, Allen TM, Kao GY, Balzarini J, DeClercq E (1995) J Med Chem 30:303–314

    Article  CAS  Google Scholar 

  5. Tian YP, Duan CY, Lu ZL, You XZ (1996) Polyhedron 15:2263–2271

    Article  CAS  Google Scholar 

  6. Bresolin L, Burrow RA, H¨orner M, Bermejo E, Castĩneiras A (1997) Polyhedron 16:3947–3951

    Article  CAS  Google Scholar 

  7. Basuli F, Ruf M, Pierpont CG, Bhattacharya S (1998) Inorg Chem 37:6113–6116

    Article  CAS  Google Scholar 

  8. Basuli F, Peng SM, Bhattacharya S (2000) Inorg Chem 39:1120–1127

    Article  CAS  Google Scholar 

  9. Basuli F, Peng SM, Bhattacharya S (2001) Inorg Chem 40:1126–1133

    Article  CAS  Google Scholar 

  10. Gupta P, Basuli F, Peng SM, Lee GH, Bhattacharya S (2003) Inorg Chem 42:2069–2074

    Article  CAS  Google Scholar 

  11. Pal I, Dutta S, Basuli F, Goverdhan S, Peng SM, Lee GH, Bhattacharya S (2003) Inorg Chem 42:4338–4345

    Article  CAS  Google Scholar 

  12. de Sousa GF, Deflon VM, Niquet E (2004) J Mol Struct 687:17–21

    Article  CAS  Google Scholar 

  13. Kasuga NC, Sekino K, Koumo C, Shimada N, Ishikawa M, Nomiya K (2001) J Inorg Biochem 84:55–65

    Article  CAS  Google Scholar 

  14. Hall LH, Chen SY, Barnes BJ, West DX (1999) Metal Based Drugs 6:143–147

    Article  CAS  Google Scholar 

  15. Bermejo E, Carballo R, Castineiras A, Dominguez R, Liberta AE, Maichle-Mossmer C, West DX (1999) Z Naturforsch B 54:777–787

    CAS  Google Scholar 

  16. Perez JM, Matesanz AI, Marin-Ambite A, Navarro P, Alonso C, Souza P (1999) J Inorg Biochem 75:255–261

    Article  CAS  Google Scholar 

  17. Reddy KH, Reddy PS, Babu PR (1999) J Inorg Biochem 77:169–176

    Article  CAS  Google Scholar 

  18. Kelly PF, Slawin AMZ, Soriano-Rama A (1996) J Chem Soc Dalton Trans 53–59

  19. West DX, Padhye SB, Sonawane PB (1991) Struct Bond 76:1–50

    CAS  Google Scholar 

  20. Liberta AE, West DX (1992) Biometal 5:121–126

    Article  CAS  Google Scholar 

  21. West DX, Liberta AE, Padhye SB, Chikate RC, Sonawane PB, Kumbhar AS, Yerande RG (1993) Coord Chem Rev 123:49–81

    Article  CAS  Google Scholar 

  22. Abram U, Ortner K, Gust R, Sommer K (2000) J Chem Soc Dalton Trans 735–744

  23. West DX, Bain GA, Butcher RJ, Jasinski JP, Li Y, Pozdniakiv RY, Valdes-Martinez J, Toscano RA, Hernandes-Ortega S (1996) Polyhedron 15:665–674

    Article  CAS  Google Scholar 

  24. Babu RR, Vijayan N, Gopalakrishnan R, Rramasamy P (2002) J Crystal Growth 240:545–548

    Article  Google Scholar 

  25. Ruangpornvisuti V, Supakornchailert K, Tungchitpienchai C, Wanno B (2006) Struct Chem 17:27–34

    Article  CAS  Google Scholar 

  26. Ruangpornvisuti V, Pulpoka B, Tuntulani T, Thipyapong K, Suksai C (2002) Bull Korean Chem Soc 23:555–562

    Article  CAS  Google Scholar 

  27. Thipyapong K, Arano Y, Ruangpornvisuti V (2004) J Mol Struct (Theochem) 676:65–71

    Article  CAS  Google Scholar 

  28. Thipyapong K, Yasarawan N,Wanno B, Arano Y, Ruangpornvisuti V (2005) J Mol Struct (Theochem) 755:45–53

    Article  CAS  Google Scholar 

  29. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  30. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  31. Becke AD (1993) Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  32. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  33. Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  34. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJR, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.03. Gaussian, Inc., Wallingford

    Google Scholar 

  36. Flükiger P, Lüthi HP, Portmann S, Weber J (2000) MOLEKEL 4.3. Swiss Center for Scientific Computing, Manno

    Google Scholar 

  37. Sabin JR, Trickey SB, Apell SP, Oddershede J (2000) Int J Quantum Chem 77: 358–366

    Article  CAS  Google Scholar 

  38. Koopmans T (1933) Physica 1:104–113

    Article  CAS  Google Scholar 

  39. Lewars E (2003) Computational chemistry: Introduction to the theory and applications of molecular and quantum mechanics. Kluwer Academic Publishers, Boston

    Google Scholar 

  40. Ruangpornvisuti V, Wanno B (2004) J Mol Model 10:418–426

    Article  CAS  Google Scholar 

  41. Wanno B, Ruangpornvisuti V (2006) J Mol Struct (Theochem) 766:159–164

    Article  CAS  Google Scholar 

  42. Wanno B, Ruangpornvisuti V (2005) Chem Phys Lett 415:176–182

    Article  CAS  Google Scholar 

  43. Pérez-Rebolledo A, Piro OE, Castellano EE, Teixeira LR, Batista AA, Beraldo H (2006) J Mol Struct 794:18–23

    Article  CAS  Google Scholar 

  44. Qing Y, Hua DJ, Gang ZL, Qing ZX, Dong BH, Hong L (2006) J Mol Struct 794:71–76

    Article  CAS  Google Scholar 

  45. Irving H, Williams RJP (1953) J Chem Soc 4:3192–3210

    Article  Google Scholar 

Download references

Acknowledgments

The financial support by the Rachadapisek Sompoch Research Fund, Chulalongkorn University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vithaya Ruangpornvisuti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruangpornvisuti, V. A DFT study of molecular structures and tautomerizations of 2-benzoylpyridine semicarbazone and picolinaldehyde N-oxide thiosemicarbazone and their complexations with Ni(II), Cu(II), and Zn(II). Struct Chem 18, 977–984 (2007). https://doi.org/10.1007/s11224-007-9258-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-007-9258-7

Keywords

Navigation