Skip to main content
Log in

C≡H ⋅s O Hydrogen Bonds in Small Ring Carbonyl Compounds: Vibrational Spectroscopy and Ab initio Calculations

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The effect of the molecular structure on the properties of C-H⋅s O bonds was investigated in a set of small cyclic carbonyl compounds, using vibrational spectroscopy and ab initio calculations. Two main effects were studied: the size of the ring and the inclusion of oxygen atoms in the ring. The analysis of the band profile of the carbonyl stretching mode reveals the presence of single dimerization equilibria in the series cyclobutanone-cyclopentanone-cyclohexanone. The smallest cyclobutanone was found to have the lowest dimerization energy, with an experimental ΔH value of 3.7± 0.6 kJ mol−1. The systems with oxygen atoms in the ring, γ-butyrolactone and ethylene carbonate were found to present more complex equilibria. Ab initio calculations suggest that this complexity is due to the presence of additional dimer structures and higher oligomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press Inc.: New York, 1997.

    Google Scholar 

  2. Desiraju, G. R.; Steiner, T. The weak hydrogen bond in structural chemistry and biology; Oxford University Press Inc.: New York, 1999, and references cited therein.

    Google Scholar 

  3. Desiraju, G. Nature 2001, 412, 397.

    Article  PubMed  Google Scholar 

  4. Wahl, C. M.; Sundaralingam, M. Trends Biochem. Sci. 1997, 22, 97.

    Article  PubMed  Google Scholar 

  5. Derewenda, Z. S.; Derewenda, U.; Kobos, P. M. J. Mol. Biol. 1994, 241, 83.

    Article  PubMed  Google Scholar 

  6. Auffinger, P.; Westhof, E. J. Mol. Biol. 1997, 274, 54.

    Article  PubMed  Google Scholar 

  7. Marfurt, J.; Leumann, C. Angew. Chem. Int. Ed. 1998, 37, 175.

    Article  Google Scholar 

  8. Scheiner, S.; Kar, T.; Gu, Y. J. Biol. Chem. 2001, 276, 9832.

    Article  PubMed  Google Scholar 

  9. Li, X.; Liu, L.; Schlegel, H. B. J. Am. Chem. Soc. 2002, 124, 9639.

    Article  PubMed  Google Scholar 

  10. Scheiner, S.; Grabowski, S.; Kar, T. J. Phys. Chem. A 2001, 105, 10607.

    Article  Google Scholar 

  11. Hermansson, K. J. Phys. Chem. A 2002, 106, 4695.

    Article  Google Scholar 

  12. Grabowski, S. J. J. Phys. Chem. A 2001, 105, 10739.

    Article  Google Scholar 

  13. Delanoye, S. N.; Herrebout, W. A.; van der Veken, B. J. J. Am. Chem. Soc. 2002, 124, 7490.

    Article  PubMed  Google Scholar 

  14. Ribeiro-Claro, P. J. A.; Marques, M. P. M.; Amado, A. M. Chem. Phys. Chem. 2002, 3, 599.

    PubMed  Google Scholar 

  15. Wójcik, J.; Kamienska-Trela, K.; Pecul, M.; Bartoszak-Adamska, E.; Vdovienko, S. I.; Gerus, I. I. Chem. Phys. Chem. 2004, 5, 209.

    PubMed  Google Scholar 

  16. Vaz, P. D.; Ribeiro-Claro, P. J. A. J. Phys. Chem. A 2003, 107, 6301.

    Article  Google Scholar 

  17. Vaz, P. D.; Ribeiro-Claro, P. J. A. J. Raman Spectr. 2003, 34, 863.

    Article  Google Scholar 

  18. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, Jr., J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.11; Gaussian, Inc.: Pittsburgh PA, 1998.

    Google Scholar 

  19. Glendening, E. D.; Reed, A E.; Carpenter J. E.; Weinhold, F. NBO 3.0 Program Manual, Gaussian Inc., Pittsburgh PA.

  20. Vaz, P. D.; Ribeiro-Claro, P. J. A. Chem. Phys. Lett. 2004, 390, 358.

    Article  Google Scholar 

  21. Allen, G.; Ellington, P. S.; Meakins, G. D. J. Chem. Soc. 1960, 1909.

  22. Pemberton, R. S.; Shurvell, H. F. J. Raman Spectr. 1996, 26, 373.

    Article  Google Scholar 

  23. Girling, R. B.; Shurvell, H. F. Vibrational Spectr. 1998, 18, 77.

    Article  Google Scholar 

  24. Lord, R. C.; Nolin, B.; Stidham, H. D. J. Chem. Soc. 1955, 77, 1365.

    Article  Google Scholar 

  25. Daniel, D. C.; McHale, J. L. J. Phys. Chem. A 1997, 101, 3070.

    Article  Google Scholar 

  26. Suetaka, W. Gazz. Chim. Ital. 1952, 82, 768.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo J. A. Ribeiro-Claro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaz, P.D., Ribeiro-Claro, P.J.A. C≡H ⋅s O Hydrogen Bonds in Small Ring Carbonyl Compounds: Vibrational Spectroscopy and Ab initio Calculations. Struct Chem 16, 287–293 (2005). https://doi.org/10.1007/s11224-005-4460-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-005-4460-y

Keywords

Navigation