Skip to main content
Log in

Velocity and Dissipation Characteristics of Turbulence in Solar-Flare Plasma: An Application of Stochastic Lagrangian Models

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Turbulence is one of the products of the magnetic-reconnection process in the solar-flare plasma. It intensely shifts the dynamics of the magnetic-reconnection process and rapidly transfers energy that facilitates plasma heating by over 10 MK and particle energization. In this study, using the results of a Monte Carlo experiment through the Euler–Maruyama approximation of stochastic Lagrangian models for inhomogeneous hydrodynamic turbulence, we present the velocity and dissipation (relaxation rate) characteristics of stochastic motions of particles (particles obeying a Gaussian distribution) in the turbulence of the solar-flare plasma. A Monte Carlo experiment was performed for a turbulent kinetic energy of \(10^{30}\text{ erg}\), on a time scale of ten seconds and a length scale of the order of the full loop half-length [\(10^{10}\text{ cm}\)] of the solar flare. The results of the velocity and dissipation (relaxation rate) are presented and analyzed in both one and two dimensions. We observed that the positive value of relaxation rate of \((1\,\text{--}\,8) \times 10^{-4}\text{ s}^{-1} \) for ≈ five seconds of dispersion time could lead to energy transfer and dissipation of the energy in the turbulence of the solar flare. The Monte Carlo mean relaxation rate of \(4.5 \times 10^{-4}\text{ s}^{-1}\) shows that it dissipates \(\approx 4.5 \times 10^{27}\text{ erg}\) energy into thermal energy in ten seconds, which is equal to ≈ 0.5% of the total injected kinetic energy. Velocities of the stochastic particles in the turbulence show the random fluctuations, which are unsteadily dispersive in nature. The range and mean values of particle velocities are \(\approx (0.5\,\text{--}\,3) \times 10^{6}\text{ cm}\,\text{s}^{-1} \) and \(1.5 \times 10^{6}\text{ cm}\,\text{s}^{-1} \), respectively, which indicates low-atmospheric turbulence (chromosphere) in the solar flare. The results obtained are in agreement with observations. Our analysis thus demonstrates that the turbulence in the solar flare dissipates ≈ 0.5% of the injected energy into thermal energy and low-atmospheric turbulence (chromosphere) in the solar flare. We surmise that the rest of the turbulent kinetic energy goes to the non-thermal particle energization (particle acceleration), generation of the termination shock, and other dynamical processes in the solar flare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Alfvén, H.: 1942, Existence of electromagnetic-hydrodynamic waves. Nature 150, 405. DOI.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Caspi, A., Cohen, C.M.S., Holman, G., Jing, J., Kretzschmar, M., Kontar, E.P., McTiernan, J.M., Mewaldt, R.A., O’Flannagain, A., et al.: 2017, Global energetics of solar flares. V. Energy closure in flares and coronal mass ejections. Astrophys. J. 836, 17. DOI.

    Article  ADS  Google Scholar 

  • Bayram, M., Partal, T., Buyukoz, G.O.: 2018, Numerical methods for simulation of stochastic differential equations. Adv. Differ. Equ. 2018, 17. DOI.

    Article  MathSciNet  MATH  Google Scholar 

  • Beresnyak, A.: 2019, MHD turbulence. Liv. Rev. Comput. Astrophys. 5, 2. DOI.

    Article  ADS  Google Scholar 

  • Bian, N.H., Emslie, A.G., Kontar, E.P.: 2017, The role of diffusion in the transport of energetic electrons during solar flares. Astrophys. J. 835, 262. DOI.

    Article  ADS  Google Scholar 

  • Bian, N.H., Kontar, E.P., Emslie, A.G.: 2016, Suppression of parallel transport in turbulent magnetized plasmas and its impact on the non-thermal and thermal aspects of solar flares. Astrophys. J. 824, 78. DOI.

    Article  ADS  Google Scholar 

  • Bian, N.H., Watters, J.M., Kontar, E.P., Emslie, A.G.: 2016, Anomalous cooling of coronal loops with turbulent suppression of thermal conduction. Astrophys. J. 833, 76. DOI.

    Article  ADS  Google Scholar 

  • Biskamp, D.: 2003, Magnetohydrodynamic Turbulence, Cambridge University Press, Cambridge UK. DOI.

    Book  MATH  Google Scholar 

  • Culhane, J.L., Harra, L.K., James, A.M., Al-Janabi, K., Bradley, L.J., Chaudry, R.A., Rees, K., Tandy, J.A., Thomas, P., Whillock, M.C.R., et al.: 2007, The EUV imaging spectrometer for Hinode. Solar Phys. 243, 19. DOI.

    Article  ADS  Google Scholar 

  • Del Zanna, G., Mason, H.E.: 2018, Solar UV and X-ray spectral diagnostics. Liv. Rev. Solar Phys. 15, 5. DOI.

    Article  ADS  Google Scholar 

  • Dum, C.T.: 1971, Anomalous resistivity of a turbulent plasma. Plasma Phys. 13, 399. DOI.

    Article  ADS  MATH  Google Scholar 

  • Effenberger, F., Petrosian, V.: 2018, The relation between escape and scattering times of energetic particles in a turbulent magnetized plasma: application to solar flares. Astrophys. J. Lett. 868, L28. DOI.

    Article  ADS  Google Scholar 

  • Emslie, A.G., Dennis, B.R., Shih, A.Y., Chamberlin, P.C., Mewaldt, R.A., Moore, C.S., Share, G.H., Vourlidas, A., Welsch, B.T.: 2012, Global energetics of thirty-eight large solar eruptive events. Astrophys. J. 759, 71. DOI.

    Article  ADS  Google Scholar 

  • Fang, X., Yuan, D., Xia, C., Van Doorsselaere, T., Keppens, R.: 2016, The role of Kelvin–Helmholtz instability for producing loop-top hard X-ray sources in solar flares. Astrophys. J. 833, 36. DOI.

    Article  ADS  Google Scholar 

  • Gallagher, P.T., Dennis, B.R., Krucker, S., Schwartz, R.A., Tolbert, A.K.: 2002, RHESSI and TRACE observations of the 21 April 2002 X1. 5 flare. Solar Phys. 210, 341. DOI.

    Article  ADS  Google Scholar 

  • Gan, W.Q., Zhang, H.Q., Fang, C.: 1991, A hydrodynamic model of the impulsive phase of a solar flare loop. Astron. Astrophys. 241, 618.

    ADS  Google Scholar 

  • Gloaguen, C., Léorat, J., Pouquet, A., Grappin, R.: 1985, A scalar model for MHD turbulence. Phys. D, Nonlinear Phenom. 17, 154. DOI.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gordovskyy, M., Kontar, E.P., Browning, P.K.: 2016, Plasma motions and non-thermal line broadening in flaring twisted coronal loops. Astron. Astrophys. 589, A104. DOI.

    Article  ADS  Google Scholar 

  • Graham, D.B., Khotyaintsev, Y.V., André, M., Vaivads, A., Divin, A., Drake, J.F., Norgren, C., Le Contel, O., Lindqvist, P.-A., Rager, A.C., et al.: 2022, Direct observations of anomalous resistivity and diffusion in collisionless plasma. Nat. Commun. 13, 2954. DOI.

    Article  ADS  Google Scholar 

  • Iroshnikov, P.S.: 1964, Turbulence of a conducting fluid in a strong magnetic field. Soviet Astron. 7, 566.

    ADS  MathSciNet  Google Scholar 

  • Jeffrey, N.L.S., Fletcher, L., Labrosse, N., Simões, P.J.A.: 2018, The development of lower-atmosphere turbulence early in a solar flare. Sci. Adv. 4, eaav2794. DOI.

    Article  ADS  Google Scholar 

  • Jiang, Y.W., Liu, S., Liu, W., Petrosian, V.: 2006, Evolution of the loop-top source of solar flares: heating and cooling processes. Astrophys. J. 638, 1140. DOI.

    Article  ADS  Google Scholar 

  • Keller, E.F.: 2003, Models, Simulation, and “Computer Experiments”, University of Pittsburgh Press. DOI.

    Book  Google Scholar 

  • Klein, K.-L., Dalla, S.: 2017, Acceleration and propagation of solar energetic particles. Space Sci. Rev. 212, 1107. DOI.

    Article  ADS  Google Scholar 

  • Kolmogorov, A.N.: 1941, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301.

    ADS  MathSciNet  Google Scholar 

  • Kong, X., Guo, F., Shen, C., Chen, B., Chen, Y., Musset, S., Glesener, L., Pongkitiwanichakul, P., Giacalone, J.: 2019, The acceleration and confinement of energetic electrons by a termination shock in a magnetic trap: an explanation for nonthermal loop-top sources during solar flares. Astrophys. J. Lett. 887, L37. DOI.

    Article  ADS  Google Scholar 

  • Kong, X., Chen, B., Guo, F., Shen, C., Li, X., Ye, J., Zhao, L., Jiang, Z., Yu, S., Chen, Y., et al.: 2022, Numerical modeling of energetic electron acceleration, transport, and emission in solar flares: connecting loop-top and footpoint hard X-ray sources. Astrophys. J. Lett. 941, L22. DOI.

    Article  ADS  Google Scholar 

  • Kontar, E.P., Brown, J.C., Emslie, A.G., Hajdas, W., Holman, G.D., Hurford, G.J., Kašparová, J., Mallik, P.C.V., Massone, A.M., McConnell, M.L., et al.: 2011, Deducing electron properties from hard X-ray observations. Space Sci. Rev. 159, 301. DOI.

    Article  ADS  Google Scholar 

  • Kontar, E.P., Bian, N.H., Emslie, A.G., Vilmer, N.: 2013, Turbulent pitch-angle scattering and diffusive transport of hard X-ray-producing electrons in flaring coronal loops. Astrophys. J. 780, 176. DOI.

    Article  ADS  Google Scholar 

  • Kontar, E.P., Perez, J.E., Harra, L.K., Kuznetsov, A.A., Emslie, A.G., Jeffrey, N.L.S., Bian, N.H., Dennis, B.R.: 2017, Turbulent kinetic energy in the energy balance of a solar flare. Phys. Rev. Lett. 118, 155101. DOI.

    Article  ADS  Google Scholar 

  • Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., et al.: 2007, The Hinode (Solar-B) mission: an overview. Solar Phys. 243, 3. DOI.

    Article  ADS  Google Scholar 

  • Krucker, S., Battaglia, M., Cargill, P.J., Fletcher, L., Hudson, H.S., MacKinnon, A.L., Masuda, S., Sui, L., Tomczak, M., Veronig, A.L., et al.: 2008, Hard X-ray emission from the solar corona. Astron. Astrophys. Rev. 16, 155. DOI.

    Article  ADS  Google Scholar 

  • Kumar, P., Choudhary, R.K.: 2021, A study on the various modes of parallel heat conduction in the coronal loops of small and large solar flares using scaling laws. Solar Phys. 296, 147. DOI.

    Article  ADS  Google Scholar 

  • Kumar, P., Choudhary, R.K., Sampathkumaran, P., Mandal, S.: 2020, A comparative study of non-thermal parameters of the X-class solar flare plasma obtained from cold and warm thick-target models; error estimation by Monte Carlo simulation method. Astrophys. Space Sci. 365, 18. DOI.

    Article  ADS  Google Scholar 

  • Kuznetsov, A.A., Kontar, E.P.: 2015, Spatially resolved energetic electron properties for the 21 May 2004 flare from radio observations and 3D simulations. Solar Phys. 290, 79. DOI.

    Article  ADS  Google Scholar 

  • LaRosa, T.N., Moore, R.L.: 1993, A mechanism for bulk energization in the impulsive phase of solar flares: MHD turbulent cascade. Astrophys. J. 418, 912. DOI.

    Article  ADS  Google Scholar 

  • Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., Mchedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Malham, S.J.A., Wiese, A.: 2010, An introduction to SDE simulation. DOI. arXiv.

  • Mathieu, J., Scott, J.: 2000, An Introduction to Turbulent Flow, Cambridge University Press, Cambridge UK. DOI.

    Book  MATH  Google Scholar 

  • Miller, J.A., Cargill, P.J., Emslie, A.G., Holman, G.D., Dennis, B.R., LaRosa, T.N., Winglee, R.M., Benka, S.G., Tsuneta, S.: 1997, Critical issues for understanding particle acceleration in impulsive solar flares. J. Geophys. Res. Space Phys. 102, 14631. DOI.

    Article  ADS  Google Scholar 

  • Milligan, R.O.: 2015, Extreme ultra-violet spectroscopy of the lower solar atmosphere during solar flares (invited review). Solar Phys. 290, 3399. DOI.

    Article  ADS  Google Scholar 

  • Musset, S., Kontar, E.P., Vilmer, N.: 2018, Diffusive transport of energetic electrons in the solar corona: X-ray and radio diagnostics. Astron. Astrophys. 610, A6. DOI.

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1957, Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62, 509. DOI.

    Article  ADS  Google Scholar 

  • Paxton, P., Curran, P.J., Bollen, K.A., Kirby, J., Chen, F.: 2001, Monte Carlo experiments: design and implementation. Struct. Equ. Model. 8, 287. DOI.

    Article  Google Scholar 

  • Petrosian, V.: 2012, Stochastic acceleration by turbulence. Space Sci. Rev. 173, 535. DOI.

    Article  ADS  Google Scholar 

  • Polito, V., Testa, P., De Pontieu, B.: 2019, Can the superposition of evaporative flows explain broad Fe XXI profiles during solar flares? Astrophys. J. Lett. 879, L17. DOI.

    Article  ADS  Google Scholar 

  • Pope, S.B.: 1991, Application of the velocity-dissipation probability density function model to inhomogeneous turbulent flows. Phys. Fluids 3, 1947. DOI.

    Article  ADS  MATH  Google Scholar 

  • Pope, S.B.: 1994, Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech. 26, 23. DOI.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Pope, S.B.: 2011, Simple models of turbulent flows. Phys. Fluids 23, 011301. DOI.

    Article  ADS  MATH  Google Scholar 

  • Pope, S.B., Pope, S.B.: 2000, Turbulent Flows, Cambridge University Press, Cambridge UK. DOI.

    Book  MATH  Google Scholar 

  • Priest, E.: 2014, Magnetohydrodynamics of the Sun, Cambridge University Press, Cambridge. DOI.

    Book  Google Scholar 

  • Ruan, W., Xia, C., Keppens, R.: 2018, Solar flares and Kelvin-Helmholtz instabilities: a parameter survey. Astron. Astrophys. 618, A135. DOI.

    Article  ADS  Google Scholar 

  • Ruan, W., Xia, C., Keppens, R.: 2019, Extreme-ultraviolet and X-ray emission of turbulent solar flare loops. Astrophys. J. Lett. 877, L11. DOI.

    Article  ADS  Google Scholar 

  • Ruan, W., Yan, L., Keppens, R.: 2023, MHD turbulence formation in solar flares: 3D simulation and synthetic observations. Astrophys. J. 947, 67. DOI.

    Article  ADS  Google Scholar 

  • Sacks, J., Schiller, S.B., Welch, W.J.: 1989, Designs for computer experiments. Technometrics 31, 41. DOI.

    Article  MathSciNet  Google Scholar 

  • Saito, Y., Mitsui, T.: 1993, Simulation of stochastic differential equations. Ann. Inst. Stat. Math. 45, 419. DOI.

    Article  MathSciNet  MATH  Google Scholar 

  • Schekochihin, A.A., Cowley, S.C.: 2007, Turbulence and magnetic fields in astrophysical plasmas. In: Molokov, S., Moreau, R., Moffatt, K. (eds.) Magnetohydrodynamics: Historical Evolution and Trends, Springer, Dordrecht, 85. DOI.

    Chapter  Google Scholar 

  • Schwartz, R.A., Csillaghy, A., Tolbert, A.K., Hurford, G.J., McTiernan, J., Zarro, D.: 2002, RHESSI data analysis software: rationale and methods. Solar Phys. 210, 165. DOI.

    Article  ADS  Google Scholar 

  • Shen, C., Chen, B., Reeves, K.K., Yu, S., Polito, V., Xie, X.: 2022, The origin of underdense plasma downflows associated with magnetic reconnection in solar flares. Nat. Astron. 6, 317. DOI.

    Article  ADS  Google Scholar 

  • Shibata, K., Magara, T.: 2011, Solar flares: magnetohydrodynamic processes. Liv. Rev. Solar Phys. 8, 6. DOI.

    Article  ADS  Google Scholar 

  • Shibata, K., Takasao, S., Reeves, K.K.: 2023, Numerical study on excitation of turbulence and oscillation in above-the-loop-top region of a solar flare. Astrophys. J. 943, 106. DOI.

    Article  ADS  Google Scholar 

  • Simões, P.J.A., Kontar, E.P.: 2013, Implications for electron acceleration and transport from non-thermal electron rates at looptop and footpoint sources in solar flares. Astron. Astrophys. 551, A135. DOI.

    Article  ADS  Google Scholar 

  • Spitzer, L.: 1962, Physics of Fully Ionized Gases, Interscience, New York. DOI.

    Book  MATH  Google Scholar 

  • Stores, M., Jeffrey, N.L.S., Kontar, E.P.: 2021, The spatial and temporal variations of turbulence in a solar flare. Astrophys. J. 923, 40. DOI.

    Article  ADS  Google Scholar 

  • Sui, L., Holman, G.D., Dennis, B.R., Krucker, S., Schwartz, R.A., Tolbert, K.: 2003, Modeling images and spectra of a solar flare observed by RHESSI on 20 February 2002. Solar Phys. 210, 245. DOI.

    Article  ADS  Google Scholar 

  • Tajima, T., Shibata, K.: 2018, Plasma Astrophysics, CRC, Boca Raton. DOI.

    Book  Google Scholar 

  • Taylor, G.I.: 1935, Statistical theory of turbulence-II. Proc. Roy. Soc. London Ser. A, Math. Phys. Sci. 151, 444. DOI.

    Article  ADS  Google Scholar 

  • Tennekes, H., Lumley, J.L., Lumley, J.L., et al.: 1972, A First Course in Turbulence, MIT Press, Cambridge USA. DOI.

    Book  MATH  Google Scholar 

  • Vassilicos, J.C.: 2015, Dissipation in turbulent flows. Annu. Rev. Fluid Mech. 47, 95. DOI.

    Article  ADS  MathSciNet  Google Scholar 

  • Verma, M.K.: 2004, Statistical theory of magnetohydrodynamic turbulence: recent results. Phys. Rep. 401, 229. DOI.

    Article  ADS  MathSciNet  Google Scholar 

  • Vlahos, L., Isliker, H.: 2018, Particle acceleration and heating in a turbulent solar corona. Plasma Phys. Control. Fusion 61, 014020. DOI.

    Article  ADS  Google Scholar 

  • Warmuth, A., Mann, G.: 2016, Constraints on energy release in solar flares from RHESSI and GOES X-ray observations-II. Energetics and energy partition. Astron. Astrophys. 588, A116. DOI.

    Article  ADS  Google Scholar 

  • Warren, H.P.: 2006, Multithread hydrodynamic modeling of a solar flare. Astrophys. J. 637, 522. DOI.

    Article  ADS  Google Scholar 

  • Xu, L., Chen, L., Wu, D.J.: 2013, Anomalous resistivity in beam-return currents and hard-X ray spectra of solar flares. Astron. Astrophys. 550, A63. DOI.

    Article  ADS  Google Scholar 

  • Yokoyama, T., Shibata, K.: 2001, Magnetohydrodynamic simulation of a solar flare with chromospheric evaporation effect based on the magnetic reconnection model. Astrophys. J. 549, 1160. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous reviewers for their valuable reviews that improved the manuscript. The authors wish to thank P. Sampthkumaran from the National Design and Research Forum, Bangalore and K. Sankarsubramanian from U.R. Rao Satellite Centre, ISRO, Bangalore for their valuable discussions in improving the manuscript. P. Kumar wishes to thank M. Kumar from MNIT Jaipur, India for help and support in the work.

Author information

Authors and Affiliations

Authors

Contributions

Pramod Kumar has prepared the draft and figures of the manuscript. R. K. Choudhary drafted and corrected the manuscript.

Corresponding author

Correspondence to Pramod Kumar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Choudhary, R.K. Velocity and Dissipation Characteristics of Turbulence in Solar-Flare Plasma: An Application of Stochastic Lagrangian Models. Sol Phys 298, 128 (2023). https://doi.org/10.1007/s11207-023-02221-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02221-7

Keywords

Navigation