Skip to main content

Solar Wind Turbulence and the Role of Ion Instabilities

  • Chapter
Microphysics of Cosmic Plasmas

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 47))

Abstract

Solar wind is probably the best laboratory to study turbulence in astrophysical plasmas. In addition to the presence of magnetic field, the differences with neutral fluid isotropic turbulence are: (i) weakness of collisional dissipation and (ii) presence of several characteristic space and time scales. In this paper we discuss observational properties of solar wind turbulence in a large range from the MHD to the electron scales. At MHD scales, within the inertial range, turbulence cascade of magnetic fluctuations develops mostly in the plane perpendicular to the mean field, with the Kolmogorov scaling \(k_{\perp}^{-5/3}\) for the perpendicular cascade and \(k_{\|}^{-2}\) for the parallel one. Solar wind turbulence is compressible in nature: density fluctuations at MHD scales have the Kolmogorov spectrum. Velocity fluctuations do not follow magnetic field ones: their spectrum is a power-law with a −3/2 spectral index. Probability distribution functions of different plasma parameters are not Gaussian, indicating presence of intermittency. At the moment there is no global model taking into account all these observed properties of the inertial range. At ion scales, turbulent spectra have a break, compressibility increases and the density fluctuation spectrum has a local flattening. Around ion scales, magnetic spectra are variable and ion instabilities occur as a function of the local plasma parameters. Between ion and electron scales, a small scale turbulent cascade seems to be established. It is characterized by a well defined power-law spectrum in magnetic and density fluctuations with a spectral index close to −2.8. Approaching electron scales, the fluctuations are no more self-similar: an exponential cut-off is usually observed (for time intervals without quasi-parallel whistlers) indicating an onset of dissipation. The small scale inertial range between ion and electron scales and the electron dissipation range can be together described by \(\sim k_{\perp}^{-\alpha}\exp(-k_{\perp}\ell_{d})\), with α≃8/3 and the dissipation scale d close to the electron Larmor radius d ρ e . The nature of this small scale cascade and a possible dissipation mechanism are still under debate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • P. Abry, P. Gonçalves, P. Flandrin Wavelets, spectrum analysis and 1/f processes. Wavelets and statistics. Lecture Notes in Statistics (1995). http://perso.ens-lyon.fr/paulo.goncalves/pub/lns95.pdf. doi:10.1007/978-1-4612-2544-7_2

  • P. Abry, P. Gonçalves, J. Lévy Véhel, Scaling, Fractals and Wavelets. Digital Signal and Image Processing Series (ISTE/Wiley, London, 2009)

    MATH  Google Scholar 

  • O. Alexandrova, Solar wind vs magnetosheath turbulence and Alfvén vortices. Nonlinear Process. Geophys. 15, 95–108 (2008). doi:10.5194/npg-15-95-2008

    ADS  Google Scholar 

  • O. Alexandrova, J. Saur, Alfvén vortices in Saturn’s magnetosheath: Cassini observations. Geophys. Res. Lett. 35, 15102 (2008). doi:10.1029/2008GL034411

    ADS  Google Scholar 

  • O. Alexandrova, C. Lacombe, A. Mangeney, Spectra and anisotropy of magnetic fluctuations in the earth’s magnetosheath: cluster observations. Ann. Geophys. 26, 3585–3596 (2008). doi:10.5194/angeo-26-3585-2008

    ADS  Google Scholar 

  • O. Alexandrova, A. Mangeney, M. Maksimovic, N. Cornilleau-Wehrlin, J.-M. Bosqued, M. André, Alfvén vortex filaments observed in magnetosheath downstream of a quasi-perpendicular bow shock. J. Geophys. Res. 111(A10), 12208 (2006). doi:10.1029/2006JA011934

    Google Scholar 

  • O. Alexandrova, V. Carbone, P. Veltri, L. Sorriso-Valvo, Solar wind cluster observations: turbulent spectrum and role of Hall effect. Planet. Space Sci. 55, 2224–2227 (2007). doi:10.1016/j.pss.2007.05.022

    ADS  Google Scholar 

  • O. Alexandrova, V. Carbone, P. Veltri, L. Sorriso-Valvo, Small-scale energy cascade of the solar wind turbulence. Astrophys. J. 674, 1153–1157 (2008). doi:10.1086/524056

    ADS  Google Scholar 

  • O. Alexandrova, J. Saur, C. Lacombe, A. Mangeney, J. Mitchell, S.J. Schwartz, P. Robert, Universality of solar-wind turbulent spectrum from MHD to electron scales. Phys. Rev. Lett. 103(16), 165003 (2009). doi:10.1103/PhysRevLett.103.165003

    ADS  Google Scholar 

  • O. Alexandrova, J. Saur, C. Lacombe, A. Mangeney, S.J. Schwartz, J. Mitchell, R. Grappin, P. Robert, Solar wind turbulent spectrum from MHD to electron scales, in Twelfth International Solar Wind Conference, vol. 1216 (2010), pp. 144–147. doi:10.1063/1.3395821

    Google Scholar 

  • O. Alexandrova, C. Lacombe, A. Mangeney, R. Grappin Fluid-like dissipation of magnetic turbulence at electron scales in the solar wind. arXiv:1111.5649v1 (2011)

  • O. Alexandrova, C. Lacombe, A. Mangeney, R. Grappin, M. Maksimovic, Solar wind turbulent spectrum at plasma kinetic scales. Astrophys. J. 760(2), 121 (2012). doi:10.1088/0004-637X/760/2/121

    ADS  Google Scholar 

  • S.D. Bale, P.J. Kellogg, F.S. Mozer, T.S. Horbury, H. Reme, Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 94(21), 215002 (2005). doi:10.1103/PhysRevLett.94.215002

    ADS  Google Scholar 

  • S.D. Bale, J.C. Kasper, G.G. Howes, E. Quataert, C. Salem, D. Sundkvist, Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind. Phys. Rev. Lett. 103, 211101 (2009). doi:10.1103/PhysRevLett.103.211101

    ADS  Google Scholar 

  • A. Balogh, C.M. Carr, M.H. Acuña, M.W. Dunlop, T.J. Beek, P. Brown, K.-H. Fornaçon, E. Georgescu, K.-H. Glassmeier, J. Harris, G. Musmann, T. Oddy, K. Schwingenschuh, The cluster magnetic field investigation: overview of in-flight performance and initial results. Ann. Geophys. 19, 1207–1217 (2001). doi:10.5194/angeo-19-1207-2001

    ADS  Google Scholar 

  • A. Bershadskii, K.R. Sreenivasan, Intermittency and the passive nature of the magnitude of the magnetic field. Phys. Rev. Lett. 93(6), 064501 (2004). doi:10.1103/PhysRevLett.93.064501

    ADS  Google Scholar 

  • J.W. Bieber, W. Wanner, W.H. Matthaeus, Dominant two-dimensional solar wind turbulence with implications for cosmic ray transport. J. Geophys. Res. 101, 2511–2522 (1996). doi:10.1029/95JA02588

    ADS  Google Scholar 

  • D. Biskamp, Nonlinear Magnetohydrodynamics (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  • D. Biskamp, E. Schwarz, J.F. Drake, Two-dimensional electron magnetohydrodynamic turbulence. Phys. Rev. Lett. 76, 1264–1267 (1996). doi:10.1103/PhysRevLett.76.1264

    ADS  Google Scholar 

  • D. Biskamp, E. Schwarz, A. Zeiler, A. Celani, J.F. Drake, Electron magnetohydrodynamic turbulence. Phys. Plasmas 6, 751–758 (1999). doi:10.1063/1.873312

    ADS  MathSciNet  Google Scholar 

  • S. Boldyrev, Spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 96(11), 115002 (2006). doi:10.1103/PhysRevLett.96.115002

    ADS  Google Scholar 

  • S. Boldyrev, J.C. Perez, Spectrum of weak magnetohydrodynamic turbulence. Phys. Rev. Lett. 103(22), 225001 (2009). doi:10.1103/PhysRevLett.103.225001

    ADS  Google Scholar 

  • S. Boldyrev, J.C. Perez, Spectrum of kinetic-Alfvén turbulence. Astrophys. J. 758, 44 (2012). doi:10.1088/2041-8205/758/2/L44

    ADS  Google Scholar 

  • S. Boldyrev, J.C. Perez, J.E. Borovsky, J.J. Podesta, Spectral scaling laws in magnetohydrodynamic turbulence simulations and in the solar wind. Astrophys. J. 741, 19 (2011). doi:10.1088/2041-8205/741/1/L19

    ADS  Google Scholar 

  • S. Boldyrev, J.C. Perez, Y. Wang, Residual Energy in Weak and Strong MHD Turbulence, Numerical modeling of space plasma flows (astronum 2011), in Proceedings of a 6th internation conference, Velancia, Spain, 13–17 June, 2011, ed. by N.V. Pogorelov, J.A. Font, E. Audit, G.P. Zank, ASP Conference Series, vol. 459 (Astronomical Society of the Pacific, San Francisco, 2012), p. 3 Publication Date: 07/2012

    Google Scholar 

  • J.E. Borovsky, Flux tube texture of the solar wind: strands of the magnetic carpet at 1 AU? J. Geophys. Res. 113(A12), 8110 (2008). doi:10.1029/2007JA012684

    Google Scholar 

  • J.E. Borovsky, Looking for evidence of mixing in the solar wind from 0.31 to 0.98 AU. J. Geophys. Res. 117(A16), 6107 (2012a). doi:10.1029/2012JA017525

    Google Scholar 

  • J.E. Borovsky, The velocity and magnetic field fluctuations of the solar wind at 1 AU: statistical analysis of Fourier spectra and correlations with plasma properties. J. Geophys. Res. 117(A16), 5104 (2012b). doi:10.1029/2011JA017499

    Google Scholar 

  • S. Bourouaine, E. Marsch, F.M. Neubauer, Correlations between the proton temperature anisotropy and transverse high-frequency waves in the solar wind. Geophys. Res. Lett. 37, 14104 (2010). doi:10.1029/2010GL043697

    ADS  Google Scholar 

  • S. Bourouaine, E. Marsch, F.M. Neubauer, Temperature anisotropy and differential streaming of solar wind ions. correlations with transverse fluctuations. Astron. Astrophys. 536, 39 (2011). doi:10.1051/0004-6361/201117866

    ADS  Google Scholar 

  • S. Bourouaine, O. Alexandrova, E. Marsch, M. Maksimovic, On spectral breaks in the power spectra of magnetic fluctuations in fast solar wind between 0.3 and 0.9 AU. Astrophys. J. 749, 102 (2012). doi:10.1088/0004-637X/749/2/102

    ADS  Google Scholar 

  • R. Bruno, V. Carbone, The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 2, 4 (2005). doi:10.12942/lrsp-2005-4

    ADS  Google Scholar 

  • R. Bruno, V. Carbone, P. Veltri, E. Pietropaolo, B. Bavassano, Identifying intermittency events in the solar wind. Planet. Space Sci. 49(12), 1201–1210 (2001). Nonlinear Dynamics and Fractals in Space. http://www.sciencedirect.com/science/article/pii/S0032063301000617, doi:10.1016/S0032-0633(01)00061-7.

    ADS  Google Scholar 

  • R. Bruno, V. Carbone, L. Sorriso-Valvo, B. Bavassano, Radial evolution of solar wind intermittency in the inner heliosphere. J. Geophys. Res. 108, 1130 (2003). doi:10.1029/2002JA009615

    Google Scholar 

  • R. Bruno, V. Carbone, L. Primavera, F. Malara, L. Sorriso-Valvo, B. Bavassano, P. Veltri, On the probability distribution function of small-scale interplanetary magnetic field fluctuations. Ann. Geophys. 22, 3751–3769 (2004). doi:10.5194/angeo-22-3751-2004

    ADS  Google Scholar 

  • R. Bruno, R. D’Amicis, B. Bavassano, V. Carbone, L. Sorriso-Valvo, Magnetically dominated structures as an important component of the solar wind turbulence. Ann. Geophys. 25, 1913–1927 (2007). doi:10.5194/angeo-25-1913-2007

    ADS  Google Scholar 

  • L.F. Burlaga, Intermittent turbulence in the solar wind. J. Geophys. Res. 96, 5847–5851 (1991). doi:10.1029/91JA00087

    ADS  Google Scholar 

  • L.F. Burlaga, Intermittent turbulence in large-scale velocity fluctuations at 1 AU near solar maximum. J. Geophys. Res. 98(A10), 17467–17473 (1993). doi:10.1029/93JA01630.

    ADS  Google Scholar 

  • V. Carbone, L. Sorriso-Valvo, R. Marino, On the turbulent energy cascade in anisotropic magnetohydrodynamic turbulence. Europhys. Lett. 88, 25001 (2009a). doi:10.1209/0295-5075/88/25001

    ADS  Google Scholar 

  • V. Carbone, R. Marino, L. Sorriso-Valvo, A. Noullez, R. Bruno, Scaling laws of turbulence and heating of fast solar wind: the role of density fluctuations. Phys. Rev. Lett. 103(6), 061102 (2009b). doi:10.1103/PhysRevLett.103.061102

    ADS  Google Scholar 

  • V. Carbone, P. Veltri, R. Bruno, Experimental evidence for differences in the extended self-similarity scaling laws between fluid and magnetohydrodynamic turbulent flows. Phys. Rev. Lett. 75, 3110–3113 (1995). doi:10.1103/PhysRevLett.75.3110. http://link.aps.org/doi/10.1103/PhysRevLett.75.3110

    ADS  Google Scholar 

  • L.M. Celnikier, C.C. Harvey, R. Jegou, P. Moricet, M. Kemp, A determination of the electron density fluctuation spectrum in the solar wind, using the ISEE propagation experiment. Astron. Astrophys. 126, 293–298 (1983)

    ADS  Google Scholar 

  • B.D.G. Chandran, E. Quataert, G.G. Howes, Q. Xia, P. Pongkitiwanichakul, Constraining low-frequency Alfvénic turbulence in the solar wind using density-fluctuation measurements. Astrophys. J. 707, 1668–1675 (2009). doi:10.1088/0004-637X/707/2/1668

    ADS  Google Scholar 

  • C.H.K. Chen, T.S. Horbury, A.A. Schekochihin, R.T. Wicks, O. Alexandrova, J. Mitchell, Anisotropy of solar wind turbulence between ion and electron scales. Phys. Rev. Lett. 104, 255002 (2010a). doi:10.1103/PhysRevLett.104.255002

    ADS  Google Scholar 

  • C.H.K. Chen, R.T. Wicks, T.S. Horbury, A.A. Schekochihin, Interpreting power anisotropy measurements in plasma turbulence. Astrophys. J. 711, 79–83 (2010b). doi:10.1088/2041-8205/711/2/L79

    ADS  Google Scholar 

  • C.H.K. Chen, A. Mallet, T.A. Yousef, A.A. Schekochihin, T.S. Horbury, Anisotropy of Alfvénic turbulence in the solar wind and numerical simulations. Mon. Not. R. Astron. Soc. 415, 3219 (2011a). doi:10.1111/j.1365-2966.2011.18933.x

    ADS  Google Scholar 

  • C.H.K. Chen, S.D. Bale, C. Salem, F.S. Mozer, Frame dependence of the electric field spectrum of solar wind turbulence. Astrophys. J. 737, 41 (2011b). doi:10.1088/2041-8205/737/2/L41

    ADS  Google Scholar 

  • C.H.K. Chen, C.S. Salem, J.W. Bonnell, F.S. Mozer, S.D. Bale, Density fluctuation spectrum of solar wind turbulence between ion and electron scales. Phys. Rev. Lett. 109(3), 035001 (2012a). doi:10.1103/PhysRevLett.109.035001

    ADS  Google Scholar 

  • C.H.K. Chen, A. Mallet, A.A. Schekochihin, T.S. Horbury, R.T. Wicks, S.D. Bale, Three-dimensional structure of solar wind turbulence. Astrophys. J. 758, 120 (2012b). doi:10.1088/0004-637X/758/2/120

    ADS  Google Scholar 

  • C.H.K. Chen, G.G. Howes, J.W. Bonnell, F.S. Mozer, K.G. Klein, S.D. Bale, Kinetic scale density fluctuations in the solar wind. Solar Wind 13 Proceedings 1539, 143–146 (2013a). arXiv:1210.0127

    ADS  Google Scholar 

  • C.H.K. Chen, S.D. Bale, C.S. Salem, B.A. Maruca, Residual energy spectrum of solar wind turbulence. Astrophys. J. 770, 125 (2013b). doi:10.1088/0004-637X/770/2/125

    ADS  Google Scholar 

  • C.H.K. Chen, S. Boldyrev, Q. Xia, J.C. Perez, The nature of subproton scale turbulence in the solar wind. Phys. Rev. Lett. 110, 225002 (2013c). doi:10.1103/PhysRevLett.110.225002

    ADS  Google Scholar 

  • S. Chen, G. Doolen, J.R. Herring, R.H. Kraichnan, S.A. Orszag, Z.S. She, Far-dissipation range of turbulence. Phys. Rev. Lett. 70, 3051–3054 (1993). doi:10.1103/PhysRevLett.70.3051

    ADS  Google Scholar 

  • G.F. Chew, M.L. Goldberger, F.E. Low, The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 236, 112–118 (1956). doi:10.1098/rspa.1956.0116

    ADS  MATH  MathSciNet  Google Scholar 

  • J. Cho, A. Lazarian, The anisotropy of electron magnetohydrodynamic turbulence. Astrophys. J. 615, 41–44 (2004). doi:10.1086/425215

    ADS  Google Scholar 

  • J. Cho, E.T. Vishniac, The anisotropy of magnetohydrodynamic Alfvénic turbulence. Astrophys. J. 539, 273–282 (2000). doi:10.1086/309213

    ADS  Google Scholar 

  • J.T. Coburn, C.W. Smith, B.J. Vasquez, J.E. Stawarz, M.A. Forman, The turbulent cascade and proton heating in the solar wind during solar minimum. Astrophys. J. 754, 93 (2012). doi:10.1088/0004-637X/754/2/93

    ADS  Google Scholar 

  • L. Danaila, F. Anselmet, T. Zhou, R.A. Antonia, Turbulent energy scale budget equations in a fully developed channel flow. J. Fluid Mech. 430, 87–109 (2001). doi:10.1017/S0022112000002767.

    ADS  MATH  Google Scholar 

  • P.A. Davidson, Turbulence: an Introduction for Scientists and Engineers (Oxford University Press, Oxford, 2004)

    Google Scholar 

  • K.U. Denskat, H.J. Beinroth, F.M. Neubauer, Interplanetary magnetic field power spectra with frequencies from 2.4×10 to the −5th Hz to 470 Hz from HELIOS-observations during solar minimum conditions. J. Geophys. 54, 60–67 (1983)

    Google Scholar 

  • M. Dobrowolny, A. Mangeney, P. Veltri, Fully developed anisotropic hydromagnetic turbulence in interplanetary space. Phys. Rev. Lett. 45, 144–147 (1980). doi:10.1103/PhysRevLett.45.144

    ADS  MathSciNet  Google Scholar 

  • T. Dudok de Wit, O. Alexandrova, I. Furno, L. Sorriso-Valvo, G. Zimbardo, Methods for characterising microphysical processes in plasmas. Space Sci. Rev. (2013). doi:10.1007/s11214-013-9974-9

    Google Scholar 

  • U. Frisch, Turbulence (Cambridge University Press, Cambridge, 1995)

    MATH  Google Scholar 

  • S. Galtier, Wave turbulence in incompressible Hall magnetohydrodynamics. J. Plasma Phys. 72, 721–769 (2006). doi:10.1017/S0022377806004521

    ADS  Google Scholar 

  • S. Galtier, A. Pouquet, A. Mangeney, On spectral scaling laws for incompressible anisotropic magnetohydrodynamic turbulence. Phys. Plasmas 12(9), 092310 (2005). doi:10.1063/1.2052507

    ADS  Google Scholar 

  • P.C. Gary, C.W. Smith, W.H. Matthaeus, N.F. Otani, Heating of the solar wind by pickup ion driven Alfvén ion cyclotron instability. Geophys. Res. Lett. 23, 113–116 (1996). doi:10.1029/95GL03707

    ADS  Google Scholar 

  • S.P. Gary, Theory of Space Plasma Microinstabilities (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  • S.P. Gary, C.W. Smith, Short-wavelength turbulence in the solar wind: linear theory of whistler and kinetic Alfvén fluctuations. J. Geophys. Res. 114, 12105 (2009). doi:10.1029/2009JA014525

    Google Scholar 

  • S.P. Gary, M.D. Montgomery, W.C. Feldman, D.W. Forslund, Proton temperature anisotropy instabilities in the solar wind. J. Geophys. Res. 81, 1241–1246 (1976). doi:10.1029/JA081i007p01241

    ADS  Google Scholar 

  • S.P. Gary, R.M. Skoug, J.T. Steinberg, C.W. Smith, Proton temperature anisotropy constraint in the solar wind: ACE observations. Geophys. Res. Lett. 28, 2759–2762 (2001). doi:10.1029/2001GL013165

    ADS  Google Scholar 

  • S. Ghosh, E. Siregar, D.A. Roberts, M.L. Goldstein, Simulation of high-frequency solar wind power spectra using Hall magnetohydrodynamics. J. Geophys. Res. 101, 2493–2504 (1996). doi:10.1029/95JA03201

    ADS  Google Scholar 

  • P. Goldreich, S. Sridhar, Toward a theory of interstellar turbulence. II. Strong Alfvénic turbulence. Astrophys. J. 438, 763–775 (1995). doi:10.1086/175121

    ADS  Google Scholar 

  • P. Goldreich, S. Sridhar, Magnetohydrodynamic turbulence revisited. Astrophys. J. 485, 680 (1997). doi:10.1086/304442

    ADS  Google Scholar 

  • M.L. Goldstein, D.A. Roberts, C.A. Fitch, Properties of the fluctuating magnetic helicity in the inertial and dissipation ranges of solar wind turbulence. J. Geophys. Res. 99, 11519–11538 (1994). doi:10.1029/94JA00789

    ADS  Google Scholar 

  • H.L. Grant, R.W. Stewart, A. Moilliet, Turbulence spectra from a tidal channel. J. Fluid Mech. 12, 241–268 (1962). doi:10.1017/S002211206200018X

    ADS  MATH  Google Scholar 

  • R. Grappin, J. Leorat, A. Pouquet, Dependence of MHD turbulence spectra on the velocity field-magnetic field correlation. Astron. Astrophys. 126, 51–58 (1983)

    ADS  Google Scholar 

  • R. Grappin, A. Mangeney, E. Marsch, On the origin of solar wind MHD turbulence—HELIOS data revisited. J. Geophys. Res. 95, 8197–8209 (1990). doi:10.1029/JA095iA06p08197

    ADS  Google Scholar 

  • R. Grappin, M. Velli, A. Mangeney, “Alfvénic” versus “standard” turbulence in the solar wind. Ann. Geophys. 9, 416–426 (1991)

    ADS  Google Scholar 

  • A. Greco, W.H. Matthaeus, S. Servidio, P. Chuychai, P. Dmitruk, Statistical analysis of discontinuities in solar wind ACE data and comparison with intermittent MHD turbulence. Astrophys. J. 691, 111–114 (2009). doi:10.1088/0004-637X/691/2/L111

    ADS  Google Scholar 

  • A. Greco, S. Servidio, W.H. Matthaeus, P. Dmitruk, Intermittent structures and magnetic discontinuities on small scales in MHD simulations and solar wind. Planet. Space Sci. 58, 1895–1899 (2010). doi:10.1016/j.pss.2010.08.019

    ADS  Google Scholar 

  • A. Greco, W.H. Matthaeus, R. D’Amicis, S. Servidio, P. Dmitruk, Evidence for nonlinear development of magnetohydrodynamic scale intermittency in the inner heliosphere. Astrophys. J. 749, 105 (2012). doi:10.1088/0004-637X/749/2/105

    ADS  Google Scholar 

  • K. Hamilton, C.W. Smith, B.J. Vasquez, R.J. Leamon, Anisotropies and helicities in the solar wind inertial and dissipation ranges at 1 AU. J. Geophys. Res. 113(A12), 1106 (2008). doi:10.1029/2007JA012559

    Google Scholar 

  • A. Hasegawa, Drift mirror instability of the magnetosphere. Phys. Fluids 12, 2642–2650 (1969). doi:10.1063/1.1692407

    ADS  Google Scholar 

  • M. Haverkorn, S.R. Spangler, Plasma diagnostics of the interstellar medium with radio astronomy. Space Sci. Rev. (2013, submitted)

    Google Scholar 

  • J.-S. He, E. Marsch, C.-Y. Tu, Q.-G. Zong, S. Yao, H. Tian, Two-dimensional correlation functions for density and magnetic field fluctuations in magnetosheath turbulence measured by the cluster spacecraft. J. Geophys. Res. 116(A15), 06207 (2011a). doi:10.1029/2010JA015974

    Google Scholar 

  • J. He, E. Marsch, C. Tu, S. Yao, H. Tian, Possible evidence of Alfvén-cyclotron waves in the angle distribution of magnetic helicity of solar wind turbulence. Astrophys. J. 731, 85 (2011b). doi:10.1088/0004-637X/731/2/85

    ADS  Google Scholar 

  • P. Hellinger, H. Matsumoto, New kinetic instability: oblique Alfvén fire hose. J. Geophys. Res. 105, 10519–10526 (2000). doi:10.1029/1999JA000297

    ADS  Google Scholar 

  • P. Hellinger, H. Matsumoto, Nonlinear competition between the whistler and Alfvén fire hoses. J. Geophys. Res. 106, 13215–13218 (2001). doi:10.1029/2001JA900026

    ADS  Google Scholar 

  • P. Hellinger, P. Trávníček, J.C. Kasper, A.J. Lazarus, Solar wind proton temperature anisotropy: linear theory and WIND/SWE observations. Geophys. Res. Lett. 33, 09101 (2006). doi:10.1029/2006GL025925

    ADS  Google Scholar 

  • P. Hellinger, L. Matteini, Š. Štverák, P.M. Trávníček, E. Marsch, Heating and cooling of protons in the fast solar wind between 0.3 and 1 AU: Helios revisited. J. Geophys. Res. 116, 9105 (2011). doi:10.1029/2011JA016674

    Google Scholar 

  • P. Hellinger, P.M. Trávníček, Š. Štverák, L. Matteini, M. Velli, Proton thermal energetics in the solar wind: Helios reloaded. J. Geophys. Res. 118 (2013). doi:10.1002/jgra.50107

  • P. Henri, F. Califano, C. Briand, A. Mangeney, Low-energy Langmuir cavitons: asymptotic limit of weak turbulence. Europhys. Lett. 96, 55004 (2011). doi:10.1209/0295-5075/96/55004

    ADS  Google Scholar 

  • J.C. Higdon, Density fluctuations in the interstellar medium: evidence for anisotropic magnetogasdynamic turbulence. I. Model and astrophysical sites. Astrophys. J. 285, 109–123 (1984). doi:10.1086/162481

    ADS  Google Scholar 

  • B. Hnat, S.C. Chapman, G. Rowlands, Intermittency, scaling, and the Fokker-Planck approach to fluctuations of the solar wind bulk plasma parameters as seen by the WIND spacecraft. Phys. Rev. E 67(5), 056404 (2003). doi:10.1103/PhysRevE.67.056404

    ADS  Google Scholar 

  • B. Hnat, S.C. Chapman, G. Rowlands, Compressibility in solar wind plasma turbulence. Phys. Rev. Lett. 94(20), 204502 (2005). doi:10.1103/PhysRevLett.94.204502

    ADS  Google Scholar 

  • T.S. Horbury, M. Forman, S. Oughton, Anisotropic scaling of magnetohydrodynamic turbulence. Phys. Rev. Lett. 101(17), 175005 (2008). doi:10.1103/PhysRevLett.101.175005

    ADS  Google Scholar 

  • T.S. Horbury, M.A. Forman, S. Oughton, Spacecraft observations of solar wind turbulence: an overview. Plasma Phys. Control. Fusion 47, 703–717 (2005). doi:10.1088/0741-3335/47/12B/S52

    Google Scholar 

  • G.G. Howes, E. Quataert, On the interpretation of magnetic helicity signatures in the dissipation range of solar wind turbulence. Astrophys. J. 709, 49–52 (2010). doi:10.1088/2041-8205/709/1/L49

    ADS  Google Scholar 

  • G.G. Howes, S.C. Cowley, W. Dorland, G.W. Hammett, E. Quataert, A.A. Schekochihin, Astrophysical gyrokinetics: basic equations and linear theory. Astrophys. J. 651, 590–614 (2006). doi:10.1086/506172

    ADS  Google Scholar 

  • G.G. Howes, S.C. Cowley, W. Dorland, G.W. Hammett, E. Quataert, A.A. Schekochihin, A model of turbulence in magnetized plasmas: implications for the dissipation range in the solar wind. J. Geophys. Res. 113(A12), 5103 (2008). doi:10.1029/2007JA012665

    Google Scholar 

  • G.G. Howes, J.M. TenBarge, W. Dorland, A weakened cascade model for turbulence in astrophysical plasmas. Phys. Plasmas 18(10), 102305 (2011a). doi:10.1063/1.3646400

    ADS  Google Scholar 

  • G.G. Howes, J.M. TenBarge, W. Dorland, E. Quataert, A.A. Schekochihin, R. Numata, T. Tatsuno, Gyrokinetic simulations of solar wind turbulence from ion to electron scales. Phys. Rev. Lett. 107(3), 035004 (2011b). doi:10.1103/PhysRevLett.107.035004

    ADS  Google Scholar 

  • G.G. Howes, S.D. Bale, K.G. Klein, C.H.K. Chen, C.S. Salem, J.M. TenBarge, The slow-mode nature of compressible wave power in solar wind turbulence. Astrophys. J. 753, 19 (2012a). doi:10.1088/2041-8205/753/1/L19

    ADS  Google Scholar 

  • G.G. Howes, S.D. Bale, K.G. Klein, C.H.K. Chen, C.S. Salem, J.M. TenBarge, The slow-mode nature of compressible wave power in solar wind turbulence. Astrophys. J. 753, 19 (2012b). doi:10.1088/2041-8205/753/1/L19

    ADS  Google Scholar 

  • P.S. Iroshnikov, Turbulence of a conducting fluid in a strong magnetic field. Astron. Zh. 40, 742 (1963)

    ADS  Google Scholar 

  • P.A. Isenberg, M.A. Lee, J.V. Hollweg, The kinetic shell model of coronal heating and acceleration by ion cyclotron waves. 1. Outward propagating waves. J. Geophys. Res. 106, 5649–5660 (2001). doi:10.1029/2000JA000099

    ADS  Google Scholar 

  • K. Issautier, A. Mangeney, O. Alexandrova, Spectrum of the electron density fluctuations: preliminary results from Ulysses observations. AIP Conf. Proc. 1216, 148–151 (2010). doi:10.1063/1.3395822

    ADS  Google Scholar 

  • D. Jankovicova, Z. Voros, J. Simkanin, The influence of solar wind turbulence on geomagnetic activity. Nonlinear Process. Geophys. 15(1), 53–59 (2008). doi:10.5194/npg-15-53-2008

    ADS  Google Scholar 

  • H. Karimabadi, V. Roytershteyn, M. Wan, W.H. Matthaeus, W. Daughton, P. Wu, M. Shay, B. Loring, J. Borovsky, E. Leonardis, S.C. Chapman, T.K.M. Nakamura, Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas. Phys. Plasmas 20(1), 012303 (2013). doi:10.1063/1.4773205

    ADS  Google Scholar 

  • J.C. Kasper Solar wind plasma: kinetic properties and micro-instabilities. Ph.D. thesis, Massachusetts Institute Of Technology (2002)

    Google Scholar 

  • J.C. Kasper, A.J. Lazarus, S.P. Gary, Hot solar-wind helium: direct evidence for local heating by Alfvén-cyclotron dissipation. Phys. Rev. Lett. 101(26), 261103 (2008). doi:10.1103/PhysRevLett.101.261103

    ADS  Google Scholar 

  • J.C. Kasper, B.A. Maruca, M.L. Stevens, A. Zaslavsky, Sensitive test for ion-cyclotron resonant heating in the solar wind. Phys. Rev. Lett. 110(9), 091102 (2013). doi:10.1103/PhysRevLett.110.091102

    ADS  Google Scholar 

  • P.J. Kellogg, T.S. Horbury, Rapid density fluctuations in the solar wind. Ann. Geophys. 23, 3765–3773 (2005). doi:10.5194/angeo-23-3765-2005

    ADS  Google Scholar 

  • K.H. Kiyani, S.C. Chapman, Y.V. Khotyaintsev, M.W. Dunlop, F. Sahraoui, Global scale-invariant dissipation in collisionless plasma turbulence. Phys. Rev. Lett. 103(7), 075006 (2009). doi:10.1103/PhysRevLett.103.075006

    ADS  Google Scholar 

  • K.H. Kiyani, S.C. Chapman, F. Sahraoui, B. Hnat, O. Fauvarque, Y.V. Khotyaintsev, Enhanced magnetic compressibility and isotropic scale invariance at sub-ion Larmor scales in solar wind turbulence. Astrophys. J. 763, 10 (2013). doi:10.1088/0004-637X/763/1/10

    ADS  Google Scholar 

  • K.G. Klein, G.G. Howes, J.M. TenBarge, S.D. Bale, C.H.K. Chen, C.S. Salem, Using synthetic spacecraft data to interpret compressible fluctuations in solar wind turbulence. Astrophys. J. 755, 159 (2012). doi:10.1088/0004-637X/755/2/159

    ADS  Google Scholar 

  • A. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl. Akad. Nauk SSSR 30, 301–305 (1941a)

    ADS  Google Scholar 

  • A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl. Akad. Nauk SSSR 30, 299–303 (1941b)

    ADS  Google Scholar 

  • R.H. Kraichnan, Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8, 1385–1387 (1965)

    ADS  MathSciNet  Google Scholar 

  • R.J. Leamon, C.W. Smith, N.F. Ness, W.H. Matthaeus, H.K. Wong, Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103, 4775 (1998). doi:10.1029/97JA03394

    ADS  Google Scholar 

  • R.J. Leamon, C.W. Smith, N.F. Ness, H.K. Wong, Dissipation range dynamics: kinetic Alfvén waves and the importance of β e . J. Geophys. Res. 104, 22331–22344 (1999). doi:10.1029/1999JA900158

    ADS  Google Scholar 

  • R.J. Leamon, W.H. Matthaeus, C.W. Smith, G.P. Zank, D.J. Mullan, S. Oughton, MHD-driven kinetic dissipation in the solar wind and corona. Astrophys. J. 537, 1054–1062 (2000). doi:10.1086/309059

    ADS  Google Scholar 

  • R.P. Lepping, M.H. Acũna, L.F. Burlaga, W.M. Farrell, J.A. Slavin, K.H. Schatten, F. Mariani, N.F. Ness, F.M. Neubauer, Y.C. Whang, J.B. Byrnes, R.S. Kennon, P.V. Panetta, J. Scheifele, E.M. Worley, The wind magnetic field investigation. Space Sci. Rev. 71, 207–229 (1995). doi:10.1007/BF00751330

    ADS  Google Scholar 

  • M.P. Leubner, Z. Voros, A nonextensive entropy approach to solar wind intermittency. Astrophys. J. 618(1), 547 (2005). http://stacks.iop.org/0004-637X/618/i=1/a=547. doi:10.1086/425893

    ADS  Google Scholar 

  • H. Li, S.P. Gary, O. Stawicki, On the dissipation of magnetic fluctuations in the solar wind. Geophys. Res. Lett. 28, 1347–1350 (2001). doi:10.1029/2000GL012501

    ADS  Google Scholar 

  • Y. Lithwick, P. Goldreich, Compressible magnetohydrodynamic turbulence in interstellar plasmas. Astrophys. J. 562, 279–296 (2001). doi:10.1086/323470

    ADS  Google Scholar 

  • Q.Y. Luo, D.J. Wu, Observations of anisotropic scaling of solar wind turbulence. Astrophys. J. 714, 138–141 (2010). doi:10.1088/2041-8205/714/1/L138

    ADS  Google Scholar 

  • B.T. MacBride, M.A. Forman, C.W. Smith, Turbulence and third moment of fluctuations: Kolmogorov’s 4/5 law and its MHD analogues in the solar wind, in Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere, ed. by B. Fleck, T.H. Zurbuchen, H. Lacoste, ESA Special Publication, vol. 592 (2005), p. 613

    Google Scholar 

  • B.T. MacBride, C.W. Smith, M.A. Forman, The turbulent cascade at 1 AU: energy transfer and the third-order scaling for MHD. Astrophys. J. 679, 1644–1660 (2008). doi:10.1086/529575

    ADS  Google Scholar 

  • B.T. MacBride, C.W. Smith, B.J. Vasquez, Inertial-range anisotropies in the solar wind from 0.3 to 1 AU: Helios 1 observations. J. Geophys. Res. 115(A14), 7105 (2010). doi:10.1029/2009JA014939

    Google Scholar 

  • F. Malara, L. Primavera, P. Veltri, Nonlinear evolution of parametric instability of a large-amplitude nonmonochromatic Alfvén wave. Phys. Plasmas 7, 2866–2877 (2000). doi:10.1063/1.874136

    ADS  MathSciNet  Google Scholar 

  • F. Malara, L. Primavera, P. Veltri, Nonlinear evolution of the parametric instability: numerical predictions versus observations in the heliosphere. Nonlinear Process. Geophys. 8, 159–166 (2001). doi:10.5194/npg-8-159-2001

    ADS  Google Scholar 

  • A. Mangeney, Intermittency and regularity in the Alfvénic range of solar wind turbulence, in American Institute of Physics Conference Series, ed. by P.-L. Sulem, M. Mond, American Institute of Physics Conference Series, vol. 1439 (2012), pp. 26–41. doi:10.1063/1.3701349

    Google Scholar 

  • A. Mangeney, R. Grappin, M. Velli, Magnetohydrodynamic turbulence in the solar wind, in Advances in Solar System Magnetohydrodynamics, ed. by E.R. Priest, A.W. Hood (1991), p. 327

    Google Scholar 

  • A. Mangeney, C. Salem, P.L. Veltri, B. Cecconi, Intermittency in the solar wind turbulence and the Haar wavelet transform, in Sheffield Space Plasma Meeting: Multipoint Measurements Versus Theory, ed. by B. Warmbein, ESA Special Pub., vol. 492 (2001), p. 53

    Google Scholar 

  • A. Mangeney, C. Lacombe, M. Maksimovic, A.A. Samsonov, N. Cornilleau-Wehrlin, C.C. Harvey, J.-M. Bosqued, P. Trávníček, Cluster observations in the magnetosheath. Part 1. Anisotropies of the wave vector distribution of the turbulence at electron scales. Ann. Geophys. 24, 3507–3521 (2006). doi:10.5194/angeo-24-3507-2006

    ADS  Google Scholar 

  • P.K. Manoharan, M. Kojima, H. Misawa, The spectrum of electron density fluctuations in the solar wind and its variations with solar wind speed. J. Geophys. Res. 99, 23411 (1994). doi:10.1029/94JA01955

    ADS  Google Scholar 

  • R. Marino, L. Sorriso-Valvo, V. Carbone, A. Noullez, R. Bruno, B. Bavassano, Heating the solar wind by a magnetohydrodynamic turbulent energy cascade. Astrophys. J. 677, 71–74 (2008). doi:10.1086/587957

    ADS  Google Scholar 

  • R. Marino, L. Sorriso-Valvo, V. Carbone, P. Veltri, A. Noullez, R. Bruno, The magnetohydrodynamic turbulent cascade in the ecliptic solar wind: study of Ulysses data. Planet. Space Sci. 59, 592–597 (2011). doi:10.1016/j.pss.2010.06.005

    ADS  Google Scholar 

  • R. Marino, L. Sorriso-Valvo, R. D’Amicis, V. Carbone, R. Bruno, P. Veltri, On the occurrence of the third-order scaling in high latitude solar wind. Astrophys. J. 750, 41 (2012). doi:10.1088/0004-637X/750/1/41

    ADS  Google Scholar 

  • S.A. Markovskii, B.J. Vasquez, C.W. Smith, Statistical analysis of the high-frequency spectral break of the solar wind turbulence at 1 AU. Astrophys. J. 675, 1576–1583 (2008). doi:10.1086/527431

    ADS  Google Scholar 

  • J. Maron, P. Goldreich, Simulations of incompressible magnetohydrodynamic turbulence. Astrophys. J. 554, 1175–1196 (2001). doi:10.1086/321413

    ADS  Google Scholar 

  • E. Marsch, Kinetic physics of the solar corona and solar wind. Living Rev. Sol. Phys. 3, 1 (2006). doi:10.12942/lrsp-2006-1

    ADS  Google Scholar 

  • E. Marsch, S. Bourouaine, Velocity-space diffusion of solar wind protons in oblique waves and weak turbulence. Ann. Geophys. 29, 2089–2099 (2011). doi:10.5194/angeo-29-2089-2011

    ADS  Google Scholar 

  • E. Marsch, A. Mangeney, Ideal MHD equations in terms of compressive Elsaesser variables. J. Geophys. Res. 92, 7363–7367 (1987). doi:10.1029/JA092iA07p07363

    ADS  Google Scholar 

  • E. Marsch, C.-Y. Tu, Spectral and spatial evolution of compressible turbulence in the inner solar wind. J. Geophys. Res. 95, 11945–11956 (1990). doi:10.1029/JA095iA08p11945

    ADS  Google Scholar 

  • E. Marsch, C.-Y. Tu, Evidence for pitch angle diffusion of solar wind protons in resonance with cyclotron waves. J. Geophys. Res. 106, 8357–8362 (2001). doi:10.1029/2000JA000414

    ADS  Google Scholar 

  • E. Marsch, R. Schwenn, H. Rosenbauer, K.-H. Muehlhaeuser, W. Pilipp, F.M. Neubauer, Solar wind protons—three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU. J. Geophys. Res. 87, 52–72 (1982). doi:10.1029/JA087iA01p00052

    ADS  Google Scholar 

  • L. Matteini, S. Landi, P. Hellinger, F. Pantellini, M. Maksimovic, M. Velli, B.E. Goldstein, E. Marsch, Evolution of the solar wind proton temperature anisotropy from 0.3 to 2.5 AU. Geophys. Res. Lett. 34, 20105 (2007). doi:10.1029/2007GL030920

    ADS  Google Scholar 

  • L. Matteini, P. Hellinger, S. Landi, P.M. Trávníček, M. Velli Ion kinetics in the solar wind: coupling global expansion to local microphysics. Space Sci. Rev., 128 (2011). doi:10.1007/s11214-011-9774-z

  • W.H. Matthaeus, M.L. Goldstein, Low-frequency 1/f noise in the interplanetary magnetic field. Phys. Rev. Lett. 57, 495–498 (1986). doi:10.1103/PhysRevLett.57.495

    ADS  Google Scholar 

  • W.H. Matthaeus, M. Velli, Who needs turbulence? A review of turbulence effects in the heliosphere and on the fundamental process of reconnection. Space Sci. Rev. 160, 145–168 (2011). doi:10.1007/s11214-011-9793-9

    ADS  Google Scholar 

  • W.H. Matthaeus, M.L. Goldstein, C. Smith, Evaluation of magnetic helicity in homogeneous turbulence. Phys. Rev. Lett. 48, 1256–1259 (1982). doi:10.1103/PhysRevLett.48.1256

    ADS  Google Scholar 

  • W.H. Matthaeus, M.L. Goldstein, D.A. Roberts, Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind. J. Geophys. Res. 95, 20673–20683 (1990). doi:10.1029/JA095iA12p20673

    ADS  Google Scholar 

  • W.H. Matthaeus, S. Servidio, P. Dmitruk, Comment on “Kinetic simulations of magnetized turbulence in astrophysical plasmas”. Phys. Rev. Lett. 101(14), 149501 (2008). doi:10.1103/PhysRevLett.101.149501

    ADS  Google Scholar 

  • W.H. Matthaeus, S. Servidio, P. Dmitruk, Dispersive effects of Hall electric field in turbulence. AIP Conf. Proc. 1216, 184–187 (2010). doi:10.1063/1.3395832

    ADS  Google Scholar 

  • W.H. Matthaeus, S. Servidio, P. Dmitruk, V. Carbone, S. Oughton, M. Wan, K.T. Osman, Local anisotropy, higher order statistics, and turbulence spectra. Astrophys. J. 750, 103 (2012). doi:10.1088/0004-637X/750/2/103

    ADS  Google Scholar 

  • N. Meyer-Vernet, Basics of the Solar Wind (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  • L.J. Milano, W.H. Matthaeus, P. Dmitruk, D.C. Montgomery, Local anisotropy in incompressible magnetohydrodynamic turbulence. Phys. Plasmas 8, 2673–2681 (2001). doi:10.1063/1.1369658

    ADS  Google Scholar 

  • W.-C. Müller, R. Grappin, Spectral energy dynamics in magnetohydrodynamic turbulence. Phys. Rev. Lett. 95(11), 114502 (2005). doi:10.1103/PhysRevLett.95.114502

    ADS  Google Scholar 

  • Y. Narita, S.P. Gary, S. Saito, K.-H. Glassmeier, U. Motschmann, Dispersion relation analysis of solar wind turbulence. Geophys. Res. Lett. 38, 5101 (2011). doi:10.1029/2010GL046588

    ADS  Google Scholar 

  • K.T. Osman, W.H. Matthaeus, A. Greco, S. Servidio, Evidence for inhomogeneous heating in the solar wind. Astrophys. J. 727, 11 (2011). doi:10.1088/2041-8205/727/1/L11

    ADS  Google Scholar 

  • K.T. Osman, W.H. Matthaeus, B. Hnat, S.C. Chapman, Kinetic signatures and intermittent turbulence in the solar wind plasma. Phys. Rev. Lett. 108(26), 261103 (2012). doi:10.1103/PhysRevLett.108.261103

    ADS  Google Scholar 

  • M.J. Owens, R.T. Wicks, T.S. Horbury, Magnetic discontinuities in the near-earth solar wind: evidence of in-transit turbulence or remnants of coronal structure? Sol. Phys. 269(2), 411–420 (2011). doi:10.1007/s11207-010-9695-0

    ADS  Google Scholar 

  • S. Perri, A. Balogh, Differences in solar wind cross-helicity and residual energy during the last two solar minima. Geophys. Res. Lett. 37, 17102 (2010). doi:10.1029/2010GL044570

    ADS  Google Scholar 

  • S. Perri, V. Carbone, P. Veltri, Where does fluid-like turbulence break down in the solar wind? Astrophys. J. 725, 52–55 (2010). doi:10.1088/2041-8205/725/1/L52

    ADS  Google Scholar 

  • S. Perri, M.L. Goldstein, J.C. Dorelli, F. Sahraoui, Detection of small-scale structures in the dissipation regime of solar-wind turbulence. Phys. Rev. Lett. 109(19), 191101 (2012). doi:10.1103/PhysRevLett.109.191101

    ADS  Google Scholar 

  • D. Perrone, F. Valentini, S. Servidio, S. Dalena, P. Veltri, Vlasov simulations of multi-ion plasma turbulence in the solar wind. Astrophys. J. 762, 99 (2013). doi:10.1088/0004-637X/762/2/99

    ADS  Google Scholar 

  • V.I. Petviashvili, O.A. Pokhotelov, Solitary Waves in Plasmas and in the Atmosphere (Gordon & Breach Science Pub, New York, 1992). ISBN2881247873

    MATH  Google Scholar 

  • J. Pietarila Graham, D.D. Holm, P. Mininni, A. Pouquet, Inertial range scaling, Kármán-Howarth theorem, and intermittency for forced and decaying Lagrangian averaged magnetohydrodynamic equations in two dimensions. Phys. Fluids 18(4), 045106 (2006). doi:10.1063/1.2194966

    ADS  MathSciNet  Google Scholar 

  • J.J. Podesta, Dependence of solar-wind power spectra on the direction of the local mean magnetic field. Astrophys. J. 698, 986–999 (2009). doi:10.1088/0004-637X/698/2/986

    ADS  Google Scholar 

  • J.J. Podesta, On the energy cascade rate of solar wind turbulence in high cross helicity flows. J. Geophys. Res. 116(A15), 05101 (2011). doi:10.1029/2010JA016306

    Google Scholar 

  • J.J. Podesta, S.P. Gary, Magnetic helicity spectrum of solar wind fluctuations as a function of the angle with respect to the local mean magnetic field. Astrophys. J. 734, 15 (2011). doi:10.1088/0004-637X/734/1/15

    ADS  Google Scholar 

  • J.J. Podesta, D.A. Roberts, M.L. Goldstein, Spectral exponents of kinetic and magnetic energy spectra in solar wind turbulence. Astrophys. J. 664, 543–548 (2007). doi:10.1086/519211

    ADS  Google Scholar 

  • J.J. Podesta, M.A. Forman, C.W. Smith, D.C. Elton, Y. Malécot, Y. Gagne, Accurate estimation of third-order moments from turbulence measurements. Nonlinear Process. Geophys. 16, 99–110 (2009a). doi:10.5194/npg-16-99-2009

    ADS  Google Scholar 

  • J.J. Podesta, B.D.G. Chandran, A. Bhattacharjee, D.A. Roberts, M.L. Goldstein, Scale-dependent angle of alignment between velocity and magnetic field fluctuations in solar wind turbulence. J. Geophys. Res. 114(A13), 1107 (2009b). doi:10.1029/2008JA013504

    Google Scholar 

  • H. Politano, A. Pouquet, Von Kármán-Howarth equation for magnetohydrodynamics and its consequences on third-order longitudinal structure and correlation functions. Phys. Rev. E 57, 21 (1998). doi:10.1103/PhysRevE.57.R21

    ADS  Google Scholar 

  • L. Rezeau, A. Roux, C.T. Russell, Characterization of small-scale structures at the magnetopause from ISEE measurements. J. Geophys. Res. 98(17), 179–186 (1993). doi:10.1029/92JA01668

    ADS  Google Scholar 

  • O.W. Roberts, X. Li, B. Li, Kinetic plasma turbulence in the fast solar wind measured by cluster. Astrophys. J. 769, 58 (2013). doi:10.1088/0004-637X/769/1/58

    ADS  Google Scholar 

  • L. Rudakov, M. Mithaiwala, G. Ganguli, C. Crabtree, Linear and nonlinear landau resonance of kinetic Alfvén waves: consequences for electron distribution and wave spectrum in the solar wind. Phys. Plasmas 18(1), 012307 (2011). doi:10.1063/1.3532819

    ADS  Google Scholar 

  • F. Sahraoui, M.L. Goldstein, G. Belmont, P. Canu, L. Rezeau, Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Phys. Rev. Lett. 105, 131101 (2010). doi:10.1103/PhysRevLett.105.131101

    ADS  Google Scholar 

  • F. Sahraoui, G. Belmont, M.L. Goldstein, New Insight into Short-wavelength Solar Wind Fluctuations from Vlasov Theory. Astrophys. J 748(2), 100 (2012)

    ADS  Google Scholar 

  • C. Salem, Ondes, turbulence et phénoménes dissipatifs dans le vent solaire à partir des observations de la sonde wind. Ph.D. thesis, Univ. Paris VII (2000)

    Google Scholar 

  • C. Salem, A. Mangeney, S.D. Bale, P. Veltri, Solar wind magnetohydrodynamics turbulence: anomalous scaling and role of intermittency. Astrophys. J. 702, 537–553 (2009). doi:10.1088/0004-637X/702/1/537

    ADS  Google Scholar 

  • C.S. Salem, G.G. Howes, D. Sundkvist, S.D. Bale, C.C. Chaston, C.H.K. Chen, F.S. Mozer, Identification of kinetic Alfvén wave turbulence in the solar wind. Astrophys. J. 745, 9 (2012). doi:10.1088/2041-8205/745/1/L9

    ADS  Google Scholar 

  • A.A. Schekochihin, S.C. Cowley, W. Dorland, G.W. Hammett, G.G. Howes, E. Quataert, T. Tatsuno, Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. Ser. 182, 310–377 (2009). doi:10.1088/0067-0049/182/1/310

    ADS  Google Scholar 

  • S. Servidio, V. Carbone, L. Primavera, P. Veltri, K. Stasiewicz, Compressible turbulence in Hall magnetohydrodynamics. Planet. Space Sci. 55, 2239–2243 (2007). doi:10.1016/j.pss.2007.05.023

    ADS  Google Scholar 

  • S. Servidio, P. Dmitruk, A. Greco, M. Wan, S. Donato, P.A. Cassak, M.A. Shay, V. Carbone, W.H. Matthaeus, Magnetic reconnection as an element of turbulence. Nonlinear Process. Geophys. 18, 675–695 (2011). doi:10.5194/npg-18-675-2011

    ADS  Google Scholar 

  • S. Servidio, F. Valentini, F. Califano, P. Veltri, Local kinetic effects in two-dimensional plasma turbulence. Phys. Rev. Lett. 108(4), 045001 (2012). doi:10.1103/PhysRevLett.108.045001

    ADS  Google Scholar 

  • J.V. Shebalin, W.H. Matthaeus, D. Montgomery, Anisotropy in MHD turbulence due to a mean magnetic field. J. Plasma Phys. 29, 525–547 (1983). doi:10.1017/S0022377800000933

    ADS  Google Scholar 

  • C.W. Smith, J. L’Heureux, N.F. Ness, M.H. Acuña, L.F. Burlaga, J. Scheifele, The ACE magnetic fields experiment. Space Sci. Rev. 86, 613–632 (1998). doi:10.1023/A:1005092216668

    ADS  Google Scholar 

  • C.W. Smith, K. Hamilton, B.J. Vasquez, R.J. Leamon, Dependence of the dissipation range spectrum of interplanetary magnetic fluctuations on the rate of energy cascade. Astrophys. J. 645, 85–88 (2006). doi:10.1086/506151

    ADS  Google Scholar 

  • C.W. Smith, J.E. Stawarz, B.J. Vasquez, M.A. Forman, B.T. MacBride, Turbulent cascade at 1 AU in high cross-helicity flows. Phys. Rev. Lett. 103(20), 201101 (2009). doi:10.1103/PhysRevLett.103.201101

    ADS  Google Scholar 

  • C.W. Smith, B.J. Vasquez, J.V. Hollweg, Observational constraints on the role of cyclotron damping and kinetic Alfvén waves in the solar wind. Astrophys. J. 745, 8 (2012). doi:10.1088/0004-637X/745/1/8

    ADS  Google Scholar 

  • L. Sorriso-Valvo, E. Yordanova, V. Carbone, On the scaling properties of anisotropy of interplanetary magnetic turbulent fluctuations. Europhys. Lett. 90(5), 59001 (2010). doi:10.1209/0295-5075/90/59001

    ADS  Google Scholar 

  • L. Sorriso-Valvo, V. Carbone, P. Veltri, G. Consolini, R. Bruno, Intermittency in the solar wind turbulence through probability distribution functions of fluctuations. Geophys. Res. Lett. 26, 1801–1804 (1999). doi:10.1029/1999GL900270

    ADS  Google Scholar 

  • L. Sorriso-Valvo, V. Carbone, P. Giuliani, P. Veltri, R. Bruno, V. Antoni, E. Martines, Intermittency in plasma turbulence. Planet. Space Sci. 49, 1193–1200 (2001). http://dx.doi.org/10.1016/S0032-0633(01)00060-5

    ADS  Google Scholar 

  • L. Sorriso-Valvo, V. Carbone, A. Noullez, H. Politano, A. Pouquet, P. Veltri, Analysis of cancellation in two-dimensional magnetohydrodynamic turbulence. Phys. Plasmas 9, 89–95 (2002). doi:10.1063/1.1420738

    ADS  MathSciNet  Google Scholar 

  • L. Sorriso-Valvo, R. Marino, V. Carbone, A. Noullez, F. Lepreti, P. Veltri, R. Bruno, B. Bavassano, E. Pietropaolo, Observation of inertial energy cascade in interplanetary space plasma. Phys. Rev. Lett. 99(11), 115001 (2007). doi:10.1103/PhysRevLett.99.115001

    ADS  Google Scholar 

  • S.R. Spangler, C.R. Gwinn, Evidence for an inner scale to the density turbulence in the interstellar medium. Astrophys. J. 353, 29–32 (1990). doi:10.1086/185700

    ADS  Google Scholar 

  • J.E. Stawarz, C.W. Smith, B.J. Vasquez, M.A. Forman, B.T. MacBride, The turbulent cascade and proton heating in the solar wind at 1 AU. Astrophys. J. 697, 1119–1127 (2009). doi:10.1088/0004-637X/697/2/1119

    ADS  Google Scholar 

  • J.E. Stawarz, C.W. Smith, B.J. Vasquez, M.A. Forman, B.T. MacBride, The turbulent cascade for high cross-helicity states at 1 AU. Astrophys. J. 713, 920–934 (2010). doi:10.1088/0004-637X/713/2/920

    ADS  Google Scholar 

  • J.E. Stawarz, B.J. Vasquez, C.W. Smith, M.A. Forman, J. Klewicki, Third moments and the role of anisotropy from velocity shear in the solar wind. Astrophys. J. 736, 44 (2011). doi:10.1088/0004-637X/736/1/44

    ADS  Google Scholar 

  • O. Stawicki, S.P. Gary, H. Li, Solar wind magnetic fluctuation spectra: dispersion versus damping. J. Geophys. Res. 106, 8273–8282 (2001). doi:10.1029/2000JA000446

    ADS  Google Scholar 

  • G.I. Taylor, The spectrum of turbulence. Proc. R. Soc. A 164, 476–490 (1938)

    ADS  Google Scholar 

  • J.M. TenBarge, J.J. Podesta, K.G. Klein, G.G. Howes, Interpreting magnetic variance anisotropy measurements in the solar wind. Astrophys. J. 753, 107 (2012). doi:10.1088/0004-637X/753/2/107

    ADS  Google Scholar 

  • C.-Y. Tu, E. Marsch, MHD structures, waves and turbulence in the solar wind: observations and theories. Space Sci. Rev. 73, 1–2 (1995)

    ADS  Google Scholar 

  • A.J. Turner, G. Gogoberidze, S.C. Chapman, B. Hnat, W.-C. Müller, Nonaxisymmetric anisotropy of solar wind turbulence. Phys. Rev. Lett. 107(9), 095002 (2011). doi:10.1103/PhysRevLett.107.095002

    ADS  Google Scholar 

  • J. Šafránková, Z. Němeček, L. Přech, G.N. Zastenker, Ion kinetic scale in the solar wind observed. Phys. Rev. Lett. 110(2), 025004 (2013). doi:10.1103/PhysRevLett.110.025004

    Google Scholar 

  • B.J. Vasquez, V.I. Abramenko, D.K. Haggerty, C.W. Smith, Numerous small magnetic field discontinuities of Bartels rotation 2286 and the potential role of Alfvénic turbulence. J. Geophys. Res. 112(A11), 11102 (2007). doi:10.1029/2007JA012504

    Google Scholar 

  • P. Veltri, MHD turbulence in the solar wind: self-similarity, intermittency and coherent structures. Plasma Phys. Control. Fusion 41, 787–795 (1999). doi:10.1088/0741-3335/41/3A/071

    ADS  Google Scholar 

  • P. Veltri, A. Mangeney, Scaling laws and intermittent structures in solar wind MHD turbulence, in Solar Wind Nine, ed. by S.R. Habbal, R. Esser, J.V. Hollweg, P.A. Isenberg. American Institute of Physics Conference Series, vol. 471 (1999), p. 543

    Google Scholar 

  • P. Veltri, G. Nigro, F. Malara, V. Carbone, A. Mangeney, Intermittency in MHD turbulence and coronal nanoflares modelling. Nonlinear Process. Geophys. 12, 245–255 (2005). doi:10.5194/npg-12-245-2005

    ADS  Google Scholar 

  • A. Verdini, R. Grappin, R. Pinto, M. Velli, On the origin of the 1/f spectrum in the solar wind magnetic field. Astrophys. J. 750, 33 (2012). doi:10.1088/2041-8205/750/2/L33

    ADS  Google Scholar 

  • M. Wan, S. Servidio, S. Oughton, W.H. Matthaeus, The third-order law for increments in magnetohydrodynamic turbulence with constant shear. Phys. Plasmas 16 (2009). doi:10.1063/1.3240333

  • M. Wan, W.H. Matthaeus, H. Karimabadi, V. Roytershteyn, M. Shay, P. Wu, W. Daughton, B. Loring, S.C. Chapman, Intermittent dissipation at kinetic scales in collisionless plasma turbulence. Phys. Rev. Lett. 109(19), 195001 (2012). doi:10.1103/PhysRevLett.109.195001

    ADS  Google Scholar 

  • R.T. Wicks, T.S. Horbury, C.H.K. Chen, A.A. Schekochihin, Power and spectral index anisotropy of the entire inertial range of turbulence in the fast solar wind. Mon. Not. R. Astron. Soc. 407, 31–35 (2010). doi:10.1111/j.1745-3933.2010.00898.x

    ADS  Google Scholar 

  • R.T. Wicks, T.S. Horbury, C.H.K. Chen, A.A. Schekochihin, Anisotropy of imbalanced Alfvénic turbulence in fast solar wind. Phys. Rev. Lett. 106, 045001 (2011). doi:10.1103/PhysRevLett.106.045001

    ADS  Google Scholar 

  • R.T. Wicks, A. Mallet, T.S. Horbury, C.H.K. Chen, A.A. Schekochihin, J.J. Mitchell, Alignment and scaling of large-scale fluctuations in the solar wind. Phys. Rev. Lett. 110(2), 025003 (2013). doi:10.1103/PhysRevLett.110.025003

    ADS  Google Scholar 

  • P. Wu, S. Perri, K. Osman, M. Wan, W.H. Matthaeus, M.A. Shay, M.L. Goldstein, H. Karimabadi, S. Chapman, Intermittent heating in solar wind and kinetic simulations. Astrophys. J. 763, 30 (2013). doi:10.1088/2041-8205/763/2/L30

    ADS  Google Scholar 

  • A.M. Yaglom, O lokalnoi strukture polya temperatur v turbulentnom potoke. Dokl. Akad. Nauk SSSR 69, 743–746 (1949)

    MATH  MathSciNet  Google Scholar 

  • S. Yao, J.-S. He, E. Marsch, C.-Y. Tu, A. Pedersen, H. Rème, J.G. Trotignon, Multi-scale anti-correlation between electron density and magnetic field strength in the solar wind. Astrophys. J. 728, 146 (2011). doi:10.1088/0004-637X/728/2/146

    ADS  Google Scholar 

  • V. Zhdankin, S. Boldyrev, J. Mason, J.C. Perez, Magnetic discontinuities in magnetohydrodynamic turbulence and in the solar wind. Phys. Rev. Lett. 108(17), 175004 (2012). doi:10.1103/PhysRevLett.108.175004

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Alexandrova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Alexandrova, O., Chen, C.H.K., Sorriso-Valvo, L., Horbury, T.S., Bale, S.D. (2013). Solar Wind Turbulence and the Role of Ion Instabilities. In: Balogh, A., Bykov, A., Cargill, P., Dendy, R., Dudok de Wit, T., Raymond, J. (eds) Microphysics of Cosmic Plasmas. Space Sciences Series of ISSI, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7413-6_3

Download citation

Publish with us

Policies and ethics