Skip to main content
Log in

A Technique to Measure Coronal Electron Density, Temperature, and Velocity Above \(2.5\ \mathrm{R}_{\odot}\) from Sun Center Using Polarized Brightness Spectrum

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The current model for the polarized brightness (pB) spectrum has a decades-long history of progressively incorporating its dependence on electron density \(N_{\mathrm{e}}\), temperature \(T_{\mathrm{e}}\), and flow velocity in the radial direction \({\boldsymbol{V}}_{\mathrm{e}}\). The \(\mathrm{pB}_{\mathrm{N}_{\mathrm{e}}}\) spectrum follows the exact shape of the photosphere spectrum, which is not smooth, which is expected from the thermal Doppler broadening of the photosphere spectrum due to the high coronal \(T_{\mathrm{e}}\); the \(\mathrm{pB}_{\mathrm{N}_{\mathrm{e}}\mathrm{T}_{\mathrm{e}}}\) spectrum is smooth, but the free coronal electrons remain static and unaffected by solar wind, and the \(\mathrm{pB}_{\mathrm{N}_{\mathrm{e}}\mathrm{T}_{\mathrm{e}}\mathrm{V}_{\mathrm{e}}}\) spectrum is red-shifted by electrons seeing a red-shifted photosphere spectrum as they flow away from the Sun as solar wind, which takes a radial direction above \(2.5~\mathrm{R}_{\odot}\) from Sun center. In this article, we review the progress of the above three model pB spectra in describing the observations and highlight the differences, first by comparing the three model pB spectra against wavelength using a model for \(N_{\mathrm{e}}\) and constant values for \(T_{\mathrm{e}}\) and \({\boldsymbol{V}}_{\mathrm{e}}\), and second by generating three model 2D pB maps by integrating over a selected wavelength region in the three model pB spectra along lines of sight passing through the 14 July 2000 (“Bastille Day”) coronal mass ejection (CME) model, which contains 3D information on \(N_{\mathrm{e}}\), \(T_{\mathrm{e}}\), and \({\boldsymbol{V}}_{\mathrm{e}}\). In this regard, the COronal Diagnostic EXperiment (CODEX) on the International Space Station (ISS) in 2024 will measure \(N_{\mathrm{e}}\), \(T_{\mathrm{e}}\), and \({\boldsymbol{V}}_{\mathrm{e}}\) by matching the measured pB with modeled \(\mathrm{pB}_{\mathrm{N}_{\mathrm{e}}\mathrm{T}_{\mathrm{e}}\mathrm{V}_{\mathrm{e}}}\) in selected wavelength regions using multiple filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Abbo, L., Ofman, L., Antiochos, S.K., Hansteen, V.H., Harra, L., Ko, Y.K., Lapenta, G., Li, B., Riley, P., Strachan, L., von Steiger, R., Wang, Y.M.: 2016, Slow solar wind: observations and modeling. Space Sci. Rev. 201, 55. DOI. ADS.

    Article  ADS  Google Scholar 

  • Altschuler, M.D., Newkirk, G.: 1969, Magnetic Fields and the Structure of the Solar Corona. I: Methods of Calculating Coronal Fields. Solar Phys. 9, 131. DOI. ADS.

    Article  ADS  Google Scholar 

  • Baumbach, S.: 1937, Strahlung, Ergiebigkeit und Elecktronendichte der Sonnenkorona. Astron. Nachr. 263, 121. DOI.

    Article  ADS  Google Scholar 

  • Baumbach, S.: 1938, Die Polarisation der Sonnenkorona. Astron. Nachr. 267, 273. DOI.

    Article  MATH  ADS  Google Scholar 

  • Billings, D.E.: 1966, A Guide to the Solar Corona, Academic Press, New York.

    Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI. ADS.

    Article  ADS  Google Scholar 

  • Calbert, R., Beard, D.B.: 1972, The F and K components of the solar corona. Astrophys. J. 176, 497. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cram, L.E.: 1976, Determination of the temperature of the solar corona from the spectrum of the electron-scattering continuum. Solar Phys. 48, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gibson, S.E., Foster, D., Burkepile, J., de Toma, G., Stanger, A.: 2006, The calm before the storm: the link between quiescent cavities and coronal mass ejections. Astrophys. J. 641, 590. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Newmark, J., Yashiro, S., Mäkelä, C.M., Michels, P., Reginald, N., Thakur, N., Gong, Q., Kim, Y.H., Cho, K.S., Choi, S.H., Baek, J.H., Bong, S.C., Yang, H.S., Park, J.Y., Lee, J.O., Kim, R.S., Lim, E.K.: 2021, The balloon-borne investigation of temperature and speed of electrons in the corona (BITSE): mission description and preliminary results. Solar Phys. 296, 15. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grotrian, W.: 1931, Ergebnisse der Potsdamer Expedition zur Beobachtung der Sonnenfinsternis am 9. Mai 1929 in Takengon (Nordsumatra). 6. Mitteilung. Über die Intensitätsverteilung des kontinuierlichen Spektrums der inneren Korona. Mit 8 Abbildungen. (Eingegangen am 27. Juni 1931). Z. Astrophys. 3, 199. ADS.

    ADS  Google Scholar 

  • Guhathahurta, M., Holzer, T.E., MacQueen, R.M.: 1996, The large-scale density structure of the solar corona and the heliospheric current sheet. Astrophys. J. 458, 817. DOI. ADS.

    Article  ADS  Google Scholar 

  • Habbal, S.R., Druckmüller, M., Alzate, N., Ding, A., Johnson, J., Starha, P., Hoderova, J., Boe, B., Constantinou, S., Amdt, M.: 2021, Identifying the coronal source regions of solar wind streams from total solar eclipse observations and in situ measurements extending over a solar cycle. Astrophys. J. Lett. 911, 12. DOI. ADS.

    Article  Google Scholar 

  • Harder, J., Bèland, S., Pentan, S.V., Richard, E., Weatherhead, E., Araujo-Pradere, E.: 2022, SORCE and TSIS-1 SIM comparison: absolute irradiance scale reconcilation. Earth Space Sci. 9, 3e02122. DOI. ADS.

    Article  Google Scholar 

  • Hoeksema, J.T.: 1984, Structure and Evolution of the Large Scale Solar and Heliospheric Magnetic Fields. Ph.D. thesis, Stanford University. ADS.

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchère, F., Delaboudinière, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hundhausen, A.J.: 1993, Sizes and loactions of coronal mass ejections: SMM observations from 1980 and 1984 – 1989. J. Geophys. Res. 98, 13177. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ichimoto, K., Kumagai, K., Sano, I., Kobiki, T., Sakurai, T.: 1996, Measurement of the coronal electron temperature at the total solar eclipse on 1994 November 3. Publ. Astron. Soc. Japan 48, 545. DOI. ADS.

    Article  ADS  Google Scholar 

  • Inhester, B.: 2015, Thomson Scattering in the Solar Corona. ArXiv e-prints DOI.

  • Kim, I.S., Nasonova, L.P., Lisin, D.V., Popov, V.V., Krusanova, N.L.: 2017, Imaging the structure of the low K-corona. J. Geophys. Res. 122, 77. DOI. ADS.

    Article  Google Scholar 

  • Koutchmy, S., Lamy, P.L.: 1985, The F-corona and the circum-solar dust evidences and properties [G. Nikolasky memorial lecture]. In: Giese, R.H., Lamy, P. (eds.), Properties and Interactions of Interplanetary Dust, IAU Colloq. 85, Astrophys. Space Sci. Lib. 119, 63. Reidel, Dordrecht. DOI. ADS.

    Chapter  Google Scholar 

  • Koutchmy, S., Magnant, F.: 1973, On the observation of the F-corona in the vicinity of the solar limb. Astrophys. J. 186, 671. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kurucz, R.L, Furenlid, N., Brault, J., Testerman, L.: 1984, Solar flux atlas from 296 nm 1300 nm. Tucson, National Solar Observatory.

  • Lamy, P., Llebaria, A., Boclet, B., Gilardy, H., Burtin, M., Floyd, O., 2020, Coronal photopolarimetry with the LASCO-C2 coronagraph over 24 years [1996–2019]. Solar Phys. 183, 165. DOI. ADS.

    Article  Google Scholar 

  • Leblanc, Y., Dulk, G.A., Bougeret, J.L.: 1998, Tracing the electron density from the corona to 1au. Solar Phys. 183, 165. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mann, I.: 1992, The solar F-corona: calculations of the optical and infrared brightness of circumstellar dust. Astron. Astrophys. 261, 329. ADS.

    ADS  Google Scholar 

  • Mierla, M., Schwenn, R., Teriaca, L., Stenborg, G., Podlipnik, B.: 2008, Analysis of the Fe X and Fe XIV line width in the solar corona using LASCO-C1 spectral data. Astron. Astrophys. 480, 509. DOI. ADS.

    Article  ADS  Google Scholar 

  • Minnaert, M.: 1930, On the continuous spectrum of the corona and its polarization. Z. Astrophys. 1, 209. ADS.

    MATH  ADS  Google Scholar 

  • Morgan, H.: 2015, An atlas of coronal electron density at 5 R. I. Data processing and calibration. Astron. Astrophys. Suppl. Ser. 219, 23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Morgan, H., Habbal, S.: 2007, The long-term stability of the visible F-corona at heights of 3 – 6 \(\mathrm{R}_{\odot}\). Astron. Astrophys. 471, L47. DOI. ADS.

    Article  ADS  Google Scholar 

  • November, L.J., Koutchmy, S.: 1996, White-light coronal dark threads and density fine structure. Astrophys. J. 466, 512. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reginald, N.L.: 2001, MACS, an instrument, and a methodology for simultaneous and global measurements of the coronal electron temperature and the solar wind velocity on the solar corona. Ph.D. thesis, Univ. Delaware. ADS.

  • Reginald, N.L., Davila, J.M.: 2000, MACS for global measurement of the solar wind velocity and the thermal electron temperature during the total solar eclipse on 11 August 1999. Solar Phys. 195, 111. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reginald, N.L., Davila, J.M., St. Cyr, O.C.: 2004, The effects of streamers on the shape of the K-coronal spectrum. Solar Phys. 225, 249. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reginald, N.L., Newmark, J., Rastaetter, L.: 2019, Measuring electron temperature using a linear polarizer versus a polarization camera. Solar Phys. 294, 100. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reginald, N.L., Newmark, J., Rastaetter, L.: 2020, Synoptic measurements of electron temperature and speed in the solar corona with next generation white-light coronagraph. Solar Phys. 295, 95. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reginald, N.L., Newmark, J., Rastaetter, L.: 2021, Statistical error analysis on white-light filter ratio experiments to measure electron parameters. Solar Phys. 196, 146. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reginald, N.L., Rastaetter, L.: 2019, Dependence of DOLP on coronal electron temperature, speed, and structure. Solar Phys. 294, 12. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reginald, N.L., St. Cyr, O.C., Davila, J.M., Brosius, J.W.: 2003, Electron temperature and speed measurements in the low solar corona: results from the 2001 June eclipse. Astrophys. J. 599, 596. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reginald, N.L., St. Cyr, O.C., Davila, J.M., Guhathakurta, M., Hassler, D.M.: 2009, Electron-temperature maps of the low solar corona. ISCORE results from the total solar eclipse of 21 June 2006 in Libya. Solar Phys. 270, 235. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reginald, N.L., Davila, J.M., St. Cyr, O.C., Rabin, D.M., Guhathakurta, M., Hassler, D.M., Gashut, H.: 2011, Electron temperature and flow speed of the low solar corona measurement. MACS results from the total solar eclipse of 21 June 2006 in Libya. Solar Phys. 270, 235. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reginald, N.L., Gopalswamy, N., Yashiro, S., Gong, Q., Guhathakurta, M.: 2017, Replacing the polarizer wheel with a polarization camera to increase the temporal resolution and to reduce the overall complexity of a solar coronagraph. J. Astron. Telesc. Instrum. Syst. 3, 014001. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reginald, N.L., Newmark, J., Rastaetter, L., Török, T.: 2018, Evaluating uncertainties in coronal electron temperature and radial speed measurement using a simulation of the Bastille Day eruption. Solar Phys. 293, 82. DOI. ADS.

    Article  ADS  Google Scholar 

  • Saito, K., Poland, A.I., Munro, R.H: 1977, A study of the background corona near solar minimum. Solar Phys. 55, 121. DOI. ADS.

    Article  ADS  Google Scholar 

  • Saito, K., Makita, M., Nishi, K., Hata, S.: 1977, A non-spherical axisymmetric model of the solar K corona of the minimum type. Ann. Tokyo Astron. Obs. 12, 51. ADS.

    ADS  Google Scholar 

  • Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schuster, A.: 1879, On the polarization of the solar corona. Mon. Not. Roy. Astron. Soc. 40, 35. ADS.

    Article  ADS  Google Scholar 

  • Shklovskii, I.S.: 1965, Physics of the Solar Corona, Pergamon, Oxford.

    Google Scholar 

  • Török, T., Downes, C., Linker, J.A., Lionello, R., Titov, V.S., Mikić, Z., Riley, P., Caplan, R.M., Wijaya, J.: 2018, Sun-to-Earth MHD simulation of the 2000 July 14 Bastille Day Eruption. Astrophys. J. 856, 75. DOI. ADS.

    Article  ADS  Google Scholar 

  • Van de Hulst, H.C.: 1950, The electron density of the solar corona. Bull. Astron. Inst. Neth. 11, 135. ADS.

    ADS  Google Scholar 

  • van Houten, C.J.: 1950, The form of Fraunhofer lines in the inner corona. Bull. Astron. Inst. Neth. 11, 160. ADS.

    ADS  Google Scholar 

  • Wang, T., Reginald, N.L., Davila, J.M., St. Cyr, O.C., Thompson, W.T.: 2017, Variation in coronal activity from solar cycle 24 minimum to maximum using three-dimensional reconstructions of the coronal electron density from STEREO/COR1. Solar Phys. 292, 97. DOI. ADS.

    Article  ADS  Google Scholar 

  • Woltjer, J.: 1926, On the continuous spectrum of the corona. Bull. Astron. Inst. Neth. 3, 103. ADS.

    ADS  Google Scholar 

  • Woltjer, J.: 1926, Additional note on the continuous spectrum of the corona. Bull. Astron. Inst. Neth. 3, 163. ADS.

    ADS  Google Scholar 

  • Yang, H., Cho, S., Bong, O.C., Madjarska, M.S., Kim, Y., Reginald, N., Newmark, J.M.: 2023, Feasibility study of measuring degree of linear polarization of the solar F-corona using filter observations on the COronal diagnostic EXperiment. Solar Phys. 298, 57. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous reviewer for their time in reviewing the article and for the valuable comments and suggestions. The responses to the majority of the comments were incorporated in the article, which greatly improved the clarity of the presentation. N. Reginald acknowledges that the modeling presented in Section 3 was conducted under the tutelage of Joseph Davila as his Ph.D. thesis supervisor at NASA/GSFC from January 1998 to December 2000 under a NASA Research Fellowship awarded to N. Reginald through the University of Delaware. Measuring \(\mathrm{pB}_{\mathrm{N}_{\mathrm{e}}\mathrm{T}_{\mathrm{e}}\mathrm{V}_{\mathrm{e}}}\) followed the modeling with N. Reginald designing and assembling the Multi Aperture Coronal Spectrograph (MACS), as shown in Figure 13, to simultaneously measure both \(T_{\mathrm{e}}\) and \({\boldsymbol{V}}_{\mathrm{e}}\) during the total solar eclipse of 11 August 1999 in Elazig, Turkey. N. Reginald also acknowledges support by NASA Goddard Space Flight Center through Cooperative Agreement 80NSSC21M0180 to The Catholic University of America, Partnership for Heliophysics and Space Environment Research (PHaSER). We thank PSI for sharing the Bastille Day coronal model data made available through the CCMC at NASA-GSFC that allowed us to carry out the computations in Section 4.

Figure 13
figure 13

MACS experiment conducted during the total solar eclipse of 11 August 1999 in Elazig, Turkey. The NASA team comprised of Joseph Davila (seated), Nelson Reginald (kneeling), and Charles Condor (standing). Shown in the picture is the 12-inch Schmidt–Cassegrain (SC) telescope, spectrograph (MACS), ground computer (GC) to operate the camera, field generator (FG) for power, and the fiber optic coupler (FOC) with 21 fibers between SC and MACS. The image of the totality formed on the glass surface of the FOC and the slit face of the FOC illuminated the transmission grating in MACS. The totality lasted for 124 seconds.

Author information

Authors and Affiliations

Authors

Contributions

N. Reginald: Wrote the IDL codes for the three polarized brightness models in Section 3 and created all the figures. L. Rastaetter: Wrote the IDL code to read the electron density, temperature, and radial velocity data along lines of sight passing through the Bastille Day CME model that were used as inputs in the three polarized brightness model spectra to generate the associated polarized brightness maps in Section 4. J. Newmark: Provided the overall structure of the manuscript for the benefit of readers who would want to better understand CODEX. J. Newmark is the PI of CODEX. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Nelson Reginald.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reginald, N., Newmark, J. & Rastaetter, L. A Technique to Measure Coronal Electron Density, Temperature, and Velocity Above \(2.5\ \mathrm{R}_{\odot}\) from Sun Center Using Polarized Brightness Spectrum. Sol Phys 298, 73 (2023). https://doi.org/10.1007/s11207-023-02160-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02160-3

Keywords

Navigation